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ABSTRACT
In the digital landscape, distinguishing genuine flash crowds from Distributed Denial of Service
(DDoS) attacks remains a critical challenge. Flash crowds, characterized by sudden surges of
legitimate traffic, often exhibit behavioral patterns similar to DDoS attacks, leading to false
positives in detection systems. This research proposes a robust machine learning-based approach
for setting apart flash crowds from DDoS attacks, using a multi-classification methodology. The
implemented system leverages a Random Forest classifier trained on network traffic data,
focusing on key features such as packet size, flow duration, and transmission rates. The dataset is
pre-processed to handle anomalies and class imbalance using the Synthetic Minority Over-
sampling Technique (SMOTE). Evaluation metrics such as accuracy, precision, recall, and F1-
score, demonstrated the system's effectiveness, achieving over 99% accuracy in distinguishing
benign traffic from malicious attacks. Additionally, advanced visualizations such as confusion
matrices and ROC curves provided actionable insights into the model performance. The new
model's scalability and high accuracy make it a promising solution for real-time applications in
network anomaly detection, ensuring minimal disruption to legitimate user activities. This study
contributes to the ongoing efforts to enhance cyber-security defenses against evolving DDoS
threats while preserving the accessibility of web services during legitimate traffic surges.
Keywords: Flash Crowd, DDoS Detection, Random Forest Classifier, SMOTE

INTRODUCTION
Web services are critical for business
operations, communication, and social
interaction. However, they remain vulnerable
to cyber threats, particularly DDoS attacks.
These attacks overwhelm target systems by
flooding them with excessive traffic, causing
service disruptions or downtime for legitimate
users. With attackers employing increasingly
sophisticated methods, distinguishing DDoS
attacks from legitimate traffic surges—such as
flash crowds—has become more challenging.
Flash crowds, characterized by sudden spikes
in legitimate traffic due to events like product
launches or viral content, often exhibit
behavioral patterns similar to DDoS attacks,
leading to false positives in traditional

detection systems. Flash crowds refer to
sudden increases in legitimate traffic caused
by external factors such as breaking news,
sporting events, or promotional campaigns.
While beneficial for businesses, they strain
network resources and complicate intrusion
detection efforts. Studies have shown that
flash crowds exhibit specific characteristics,
such as longer flow durations and moderate
byte rates, compared to shorter flows and
higher byte rates typical of DDoS attacks
Kalkan & Algin (2021).
Traditional DDoS detection methods rely
heavily on signature-based detection or
statistical thresholds, which struggle to adapt
to evolving threats and dynamic traffic
patterns. Furthermore, these methods
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frequently fail to distinguish between flash
crowds and DDoS attacks, resulting in
misclassification and unnecessary mitigation
actions. There is a pressing need for intelligent
systems capable of accurately identifying
malicious traffic amidst legitimate surges
without compromising service availability.
DDoS attacks involve overwhelming a target
system with malicious traffic, often generated
via botnets. They differ from flash crowds in
their intent and structure, typically featuring
repetitive patterns and originating from fewer
unique IP addresses.
Related Works
Several studies have explored techniques for
differentiating between flash crowds and
DDoS attacks. Some used entropy-based
methods, for example, Gera et al. (2018)
proposed using source address entropy and
traffic cluster entropy to detect spoofed and
non-spoofed DDoS attacks. However, these
methods may produce false positives during
flash crowd events. For machine learning
approaches, Jisa David and Ciza Thomas
(2021) introduced an efficient thresholding
algorithm for detecting DDoS attacks,
achieving over 97% accuracy. Similarly, Salah
et al. (2023) combined entropy analysis with
Q-learning to improve detection rates and
reduce false positives.
For hybrid models, Marinova et al. (2020)
developed an end-to-end network slicing
framework for managing flash crowd
scenarios, emphasizing adaptability and
scalability. Their approach demonstrated rapid
deployment times and effective resource
allocation during emergencies. Despite
advancements, there remains a gap in
addressing low-rate DDoS attacks and
handling class imbalances in traffic datasets.
Previously published works related to this
research which were found to be relevant to
achieving the objectives of the work are

reviewed in this chapter. Many researchers
studied the properties of DDOS attacks and
flash crowd traffic to separate the
characteristics of both. Different dimensions
were highlighted that are quite helpful when
the two traffic events occur simultaneously.
Flash crowds were classified in different
studies and parameters were laid out to
pinpoint if there was an attack hidden in those
crowds.
Doshi. et al. (2018) tackled the escalating
problem of IoT devices being hijacked into
botnets for DDoS attacks. Rather than relying
on generic network security measures, the
authors proposed a targeted approach: training
machine learning models to recognize the tell-
tale signs of IoT attack traffic. They observed
that IoT devices, unlike typical internet users,
often exhibit predictable communication
patterns. Praseed (2018) discussed the
taxonomy of application layer distributed
denial of service attacks. A review of the
existing research directions and defense
mechanisms has also been presented to bring
out the different features used for detecting
these attacks, and the different methods of
detection. Few researchers mentioned reviews
of papers related to discriminating DDOS
attacks from the flash crowd. Most of the
techniques use a static threshold value for
detection. However, network activities and
users' behaviors could vary over time which
reduces detection accuracy. These approaches
are not suitable for detecting low-rate DDOS
attacks.
The report by Gera et al. (2018) addresses a
critical issue in cybersecurity, the detection of
spoofed and non-spoofed Distributed Denial-
of-Service (DDoS) attacks while
distinguishing them from flash crowds. The
authors proposed an innovative methodology
that leverages source address entropy and
traffic cluster entropy to accurately identify
these attacks. By focusing on the nuanced
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differences between legitimate high-traffic
events like flash crowds and malicious DDoS
activities, the study aimed to enhance network
security measures. The solution incorporated
thresholds for source and traffic entropy,
which are adjusted using tolerance factors to
balance detection rates and false positives. The
human behavior modeling for defense against
the flash crowd attacks was applied by
differentiating bots from humans based on
request dynamics, request semantics, and
deception i.e. testing the clients' ability to
ignore invisible content by Tandon, (2019) .
Razumov et al. (2020) Created an emulation
software tool that implemented a developed
algorithm for detecting and blocking HTTP
flood attacks. The method used a single
filtering system with an unlimited number of
devices and an increased number of proxies
through infrastructure building. Biruk et al.
(2020) argued that traditional detection
methods often fall short, either by relying on
limited features easily mimicked by attackers
or by incorrectly assuming DDoS attacks
originate from fewer IP addresses than flash
crowds. Their proposed solution is a
supervised machine learning approach that
leverages a combination of five key features
derived directly from web server logs i.e.
request rate, page popularity, download rate,
request inter-arrival time, and the ratio of
successful requests. They hypothesize that this
multi-faceted approach, focusing on
application layer characteristics will be more
robust and adaptable than existing methods.
The research involved creating a combined
dataset of flash crowd and DDoS attack traffic.
For the flash crowd component, they utilized
the well-established World Cup 98 dataset, a
record of website traffic during the 1998
World Cup. To generate realistic DDoS attack
data, they conducted simulated attacks on a
locally hosted copy of the same website using
the Bonesi attack tool.

In (2020) Marinova et al. introduced a novel
end-to-end network slicing framework
designed to address the unique demands of
flash crowd events, particularly in
emergencies. Recognizing that traditional
networks struggle with the sudden surge in
demand and critical communication needs
during such events, the authors proposed a
flexible and scalable architecture leveraging
network virtualization and software control.
The framework utilized a virtual resource
manager (VRM) to efficiently allocate and
manage resources, mapping cloud hardware
resources (CPU, memory) to the demands of
the wireless network.
A system to enhance password security by
combining honeywords, decoy data, and IP
tracking was proposed by Naik et al. (2023) .
The core idea was to protect user accounts
from password cracking and unauthorized
access. Honeywords, or decoy passwords, are
generated for each user account alongside their
real password. The authors highlighted the
increasing vulnerability of user accounts due
to readily available password-cracking tools.
They argue that traditional password
protection methods are insufficient and that
new mechanisms are needed. The honeyword
mechanism serves as a tripwire, alerting the
system to potential breaches. Decoy data, also
referred to as "fog computing," is presented to
the attacker after multiple failed login attempts,
further confusing them and masking the real
user data.
Salah et al. (2023) proposed a novel approach
to detecting Distributed Denial of Service
(DDoS) attacks in Software Defined Networks
(SDNs) by combining entropy analysis and Q-
learning, addressing the vulnerabilities of
traditional methods that can lead to network-
wide failures due to the centralized control
paradigm of SDNs. The system, EQD
(Entropy and Q-learning Detection), utilizes
the statistical properties of network traffic,
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focusing on destination IP address entropy, to
identify potentially malicious activity. By
integrating Q-learning, a reinforcement
learning technique, the system intelligently
manages suspected traffic rather than simply
blocking it, which helps reduce false positives
and ensures minimal disruption to legitimate
users. The authors evaluated the effectiveness
of their approach through simulations using
Mininet, comparing it with entropy-based
detection methods in terms of throughput and
detection time. The results demonstrate
significant improvements, with EQD
achieving up to a 50% increase in throughput
by effectively handling suspected traffic and
ensuring continuous service for legitimate
users.

MATERIALS AND METHODS
This study aims to develop a machine
learning-based system that effectively

distinguishes between DDoS attacks, flash
crowds, and benign traffic. Specific objectives
include; Analyzing and preprocessing network
traffic data to extract meaningful features and
implementing a Random Forest classifier with
feature-based thresholds for multi-class
classification. Evaluating the model's
performance using standard metrics such as
accuracy, precision, recall, and F1-score.
Comparing the proposed model against
existing entropy-based approaches to highlight
improvements. The methodology consists of
two main phases: data preprocessing and
model implementation. Data preprocessing
involves cleaning, normalizing, and balancing
the dataset, while model implementation
focuses on training and evaluating the Random
Forest classifier. The figure below shows the
flow of the methodology used on the proposed
system.

Figure 1: Flow chart of the Proposed System
System Description
In this research, a thresholding algorithm with
a random forest classifier (RF) is opted for as

the sole machine learning model, moving
away from entropy-based detection method.
The reason for this is due to the high accuracy
when it comes to classification. Random
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Forest is an ensemble learning technique that
combines multiple decision trees, reducing
over-fitting and improving generalization.
Unlike entropy-based thresholding, the
Random Forest classifier can capture non-
linear relationships within large network
traffic datasets. Random Forest can generalize
across different datasets, whereas the IDS
ensemble method may require manual
parameter tuning each time traffic
characteristics change.
Dataset Preprocessing
Raw network traffic datasets often contain
inconsistencies, missing values, or extreme
outliers that can degrade model performance.
Rows with missing or infinite values are
dropped and feature scaling is performed using
the StandardScaler to ensure uniform
contribution from all features. To ensure
robustness, the CICIDS 2017 dataset
underwent a systematic preprocessing pipeline
comprising four stages: data
cleaning, handling missing values, feature
selection, and class imbalance correction.
Data Cleaning
First, column names were standardized to
lowercase, and special characters (e.g.,
hyphens, spaces) were removed to ensure
compatibility with machine learning libraries.
Invalid entries (e.g., negative flow durations,
non-numeric values) were filtered out. This
step eliminated 0.3% of the dataset, ensuring
minimal loss of critical information while
maintaining data integrity.
Handling Missing Values
Missing values (NaN) and infinite entries (e.g.,
division-by-zero errors in derived metrics like
packet flow rate were identified and removed.
Approximately 1.2% of rows contained
missing values, primarily due to incomplete
packet captures. Imputation methods (e.g.,
mean substitution) were deemed unsuitable, as
they could introduce bias in time-sensitive

network metrics. Thus, rows with missing or
infinite values were dropped, retaining 98.5%
of the original dataset.
Feature Selection
To ensure uniform feature contribution,
standardization was applied using the Standard
Scaler from scikit-learn, which transforms
features to have a mean of 0 and standard
deviation of 1. While tree-based models like
Random Forest are scale-invariant, scaling
improves interoperability with other models
(e.g., SVMs or neural networks) and
accelerates convergence in gradient-based
algorithms. The key network features selected
for the classification include:

a. Flow duration represents the total elapsed time
from the beginning of the first packet to the
end of the last packet within a defined network
flow. This feature is fundamental for
understanding the temporal aspects of network
communication as variations in flow duration
can indicate different types of network activity.

b. Flow of Bytes/s, or flow throughput, measures
the average rate at which data is transferred
within a network flow. This provides insight
into the bandwidth utilization of a flow. High
byte rates indicate large data transfers, while
low rates might suggest low-bandwidth
applications or network congestion.

c. Packet Length Variance, which quantifies the
degree of variability in the sizes of packets
within a network flow. High variance indicates
that packets are of widely different sizes,
while low variance suggests that packets are
relatively uniform. Variations in packet length
can be influenced by factors such as
application type, network protocols, and
fragmentation.

d. TCP Flags: Indicators of connection states
(SYN, ACK, FIN).
The features are assigned dynamic
thresholding values defined to classify each
traffic types:
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FCs: Long flow duration (>1,000,000 ms) and
low byte rate (<100,000 bytes/s).
DDoS Attack: Short flow duration
(≤1,000,000 ms) and high byte rate (>100,000
bytes/s).
Addressing Class Imbalance
To mitigate the effects of class imbalance, the
Synthetic Minority Over-Sampling Technique
(SMOTE) was applied. SMOTE generates
synthetic samples for underrepresented classes,
improving model fairness and generalizability.
This technique improves model training by
ensuring that the classifier is exposed to
sufficient examples of all classes.
From imblearn. over_sampling import
SMOTEsmote = SMOTE (random_state=42)
X_resampled, y_resampled =
smote.fit_resample (X, y).
Model Implementation
To validate the choice of RF, preliminary
experiments were conducted with alternative
classifiers (SVM, XGBoost, and a CNN).
SVM, while effective in high-dimensional
spaces, struggled with the non-linear
separability of classes and required extensive
kernel tuning. XGBoost, though efficient,
showed sensitivity to class imbalance despite
SMOTE, leading to marginally lower recall
for minority classes. Deep learning models
(e.g., CNNs) achieved comparable accuracy
but at the cost of computational overhead and
reduced interpretability, which is undesirable
for real-time network monitoring. RF
outperformed these alternatives in balancing
accuracy, computational efficiency, and
interpretability, aligning with the study’s
objectives. The evaluation of the detection
system in certain network environments has
been carried out. It has been tested on
Windows environment as well as on Linux.

Training the Random Forest Classifier
A Random Forest classifier with 100 decision
trees is initialized and trained on 80% of the
dataset. 5-fold Cross-validation is employed to
assess model reliability, yielding average
performance metrics across multiple dataset
splits. This is done using the sklearn library:
sklearn.ensemble.RandomForestClassifier
with no. of estimators=100 and random
state=42 trained on an 80/20 train/test split of
the data. 5-fold cross-validation “(sklearn.
model_selection. cross_val_score)” is used to
obtain an average cross-validation accuracy
of >98%. While the random forest algorithm
inherently reduces overfitting through
ensemble learning, additional safeguards were
implemented.
By hyperparameter tuning, the maximum
depth parameter was constrained to 15 (vs.
unlimited depth) to prevent individual trees
from over-specializing to noise in the training
data. A stratified 5-fold cross-validation was
employed during training, ensuring the model
generalized across diverse subsets of the
imbalanced dataset. Limiting features to the
most discriminative metrics reduced the risk of
fitting irrelevant patterns and SMOTE
prevented the model from biasing predictions
toward the majority class (flash crowds).
Extreme values (e.g., flow durations > 10⁶ ms)
were truncated to the 99th percentile,
minimizing their distortive impact on training,
thereby handling outliers. To ensure statistical
rigor, the following validation techniques were
also applied:
1. 5-Fold Cross-Validation: The dataset was

partitioned into five stratified folds,
preserving the original class distribution
in each subset. The model was trained on
four folds and validated on the fifth,
iterating until all folds served as the test
set. The 5-fold cross-validation yielded a
mean accuracy of 98.9% with a standard
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deviation of 0.4%, demonstrating stable
performance across data splits. This
approach mitigates sampling bias and
provides a robust estimate of
generalization performance.

2. Confidence Intervals (CIs): For each
evaluation metric (e.g., accuracy, F1-
score), 95% confidence intervals were
calculated using the t-distribution:

CI = μ ± t (α/2, n−1)​ ⋅ n​ σ​ , where μ is
the mean metric, σ the standard deviation
across folds, n=5 (number of folds), and t
(α/2, n−1)​ , the critical t-value (2.776
for 95% CI).

To assess the significance of performance
differences between the proposed model
and baseline classifiers (e.g., SVM,
XGBoost), paired t-tests were conducted
on cross-validation scores. The null
hypothesis (H0​ ) posited no difference
in mean performance,
with p<0.05 indicating statistical
significance. While high accuracy can
raise concerns about overfitting, the
combination of cross-validation, SMOTE,
and constrained tree complexity ensures
the model generalizes effectively.
RESULTS AND DISCUSSION

To evaluate the model, several metrics and
visualizations were used:

1. Confusion Matrix: Presented the counts of true
positives, false positives, true negatives, and
false negatives for each category, providing
insight into the model's classification accuracy.

2. Network Features: The key features are
identified and ranked based on their impact on
the model's predictions, with the flow of bytes
per second and flow duration emerging as the
most influential factors.

3. ROC Curve: Illustrates the model's ability to
distinguish between classes, showcasing
excellent discriminative power with AUC

values nearing 1.00 across all categories. The
model's performance is evaluated using
accuracy, precision, recall and F1 score.
Dataset Analysis
The "FWHA-DDoS" subset of CICIDS 2017
contains three traffic categories: flash crowds
(FC), DDoS attacks, and unknown traffic.
Compared to alternatives like the World Cup
98 dataset, which focuses solely on legitimate
traffic surges—CICIDS 2017 offers a
balanced representation of both benign and
malicious traffic, making it uniquely suited for
training classifiers to differentiate adversarial
patterns. The confusion matrix in figure 3
below shows the number of true positives and
false positives for each type of traffic. The
unknown falls into a category that is neither a
legitimate flash crowd traffic nor a DDoS
attack, meaning it can be any other network
traffic anomaly.
Furthermore, the dataset’s inclusion of modern
attack vectors (e.g., HTTP floods, SYN floods)
and diverse IP address distributions aligns
with evolving cyber threats, ensuring
relevance to current network environments.
The performance of the model on one dataset
indicating the precision and recall for the
traffic types is shown in figure 4 below.
The Random Forest classifier achieved an
accuracy of 99.78%, reflecting its ability to
correctly identify traffic types with minimal
errors. The results of the evaluation were near
perfect (1.00) for each traffic type,
highlighting the model's robustness. The
confusion matrix revealed only a single
misclassification in the flash crowd and
unknown categories, demonstrating good
performance across the board. With a
processing time of 52.40 seconds, the model
was efficient, even with the large dataset size.
This dataset showcased the model's strength in
maintaining high accuracy while
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differentiating between legitimate traffic
surges and malicious activity.

Figure 2: Confusion Matrix

Figure 3: Precision-Recall Curve for Flash Crowds and DDoS Attack
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The study presents a comparative assessment
of a novel random forest-based DDoS
detection model against the IDS ensemble
benchmark paper detailed by Turke et al.
(2023). The emphasis is on articulating the
pivotal enhancements and efficiency gains
realized by our proposed methodology. The
benchmark model combines multiple
advanced components such as the White Shark
Optimizer (WSO) for optimal feature selection,
a Convolutional Neural Network (CNN) for

feature extraction, and Light GBM for the
final classification stage. While operational,
this paradigm exhibits vulnerabilities in
adapting to the intricacies of real-world
networks, particularly concerning low-rate
attacks and the separation of flash crowds
from DDoS attacks. Table 1 and Figure 4
below shows the evaluation metrics of the
proposed model in comparison with that of the
benchmark paper.

Table 1: Comparative Analysis with Benchmark Model
Metric Proposed Model Turke et al. (2023)
Accuracy 99.78% 95.84%

Precision (Avg) 98.67% 96.15%
Recall (Avg) 95.62% 95.54%
F1-Score (Avg) 98.30% 95.84%

Processing Time and
False Positive Rate

52.40 seconds,
0.2%

The new model rectifies these deficiencies via
a machine learning-driven strategy, leveraging
Random Forest classification and an
augmented feature selection process. This
yields substantial improvements in precision,
false positive mitigation, and overall
effectiveness. By analyzing the behavioral

indicators, the new model can segregate flash
crowds from actual attacks, drastically
curtailing false positives. This constitutes a
substantial advantage over the benchmark
model, which struggles to achieve lesser False
Positive Rates.

Figure 4: Comparative Analysis Graph
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Comparative Analysis Across ML-models
To further validate the choice of Random
Forest (RF), the proposed model was
compared against SVM (with RBF kernel) and
XGBoost using the same preprocessed dataset
and evaluation metrics. As shown in Table 2
below, the random forest classifier achieved
superior accuracy (99.78%) compared to SVM
and XGBoost. While XGBoost performed
competitively, RF’s lower false positive rate

(0.2% vs. XGBoost’s 0.8%) and faster
inference time (52.4 seconds vs. XG-Boost’s
68.9 seconds) making it more practical for
real-time deployment. The model achieved
comparable accuracy on the training set
(99.81%) and test set (99.78%), indicating
minimal overfitting (Δ = 0.03%). As shown in
table 2 below, the results underscore RF’s
suitability for scenarios requiring both
precision and computational efficiency.

Table 2: Result Comparison across ML-models
Metric Random Forest XGBoost SVM
Accuracy 99.78% 98.95% 95.12%

F1-Score (DDoS) 98.30% 97.20% 93.45%
Recall (DDoS) 99.65% 96.80% 88.50%
Training Time 52.40 sec 68.90 sec 120.30 sec

False Positive Rate 0.2% 0.8% 1.5%

The use of the random forest classifier with
thresholding mechanism, achieved 99.78%
accuracy in differentiating DDoS attacks. With
a processing time of 52.4 seconds for 225,711
samples and a false positive rate of 0.2%, the
model is computationally efficient and
minimizes service disruptions. Its interpretable
feature importance scores will enable network
administrators to prioritize traffic analysis and
resource allocation. The integration of
SMOTE mitigated bias toward majority
classes, improving recall for DDoS attacks and
ensuring robust detection.

CONCLUSION
This study addresses the challenge of detecting
DDoS attacks hidden within Flash Crowds
through a machine learning-driven framework,
achieving multi-classification methodology,
practical solutions for class imbalance and
potential for real-world deployment. The
Random Forest classifier, combined with
feature-based thresholds, demonstrated
exceptional performance on the datasets. The

model surpassed the benchmark study in
accuracy, effectively distinguishing between
these attacks and legitimate traffic. It also
introduced the capability for multi-
classification, improving upon previous
models that were limited to binary
classification. By leveraging domain
knowledge to define feature-based thresholds
and employing advanced techniques such as
SMOTE for class balancing, the model
achieved a near-perfect detection accuracy
(average 99.78%) across the different traffic
types and high precision, ensuring minimal
false positives. By reducing reliance on static
thresholds and manual tuning, the proposed
model framework’s scalability and accuracy
makes it directly applicable to enterprise
networks and advances adaptive cybersecurity
systems capable of evolving with emerging
threats.
Recommendations
Future research can be focused on real-time
implementation, which can be done by
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developing a deployment pipeline for live
network environments, integrating the model
with network monitoring tools, and evaluating
latency and computational overhead. Feature
engineering can be improved by exploring
additional features like protocol-specific
indicators. Furthermore, expanding dataset
diversity by incorporating data from various
network environments (IoT, cloud, etc.) and
simulating mixed traffic patterns will broaden
solutions to cyber threats. Finally,
explainability and user trust can be prioritized,
extending the use of tools like SHAP to create
interactive dashboards for network
administrators and provide actionable insights
alongside predictions.
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