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ABSTRACT

Personal data is widely used in predictive modelling and data analytics across various domains
such as healthcare. Privacy-Preserving Data Publishing has emerged as sets of techniques for
privacy protection when sharing data with analysts or researchers. It aims to balance the
privacy of users with the utility of the dataset. One of the most popular approaches to privacy
protection when publishing data is anonymization but it often leads to loss of data utility when
applied uniformly across all attributes without considering the specific vulnerabilities of the
different attributes. An approach was proposed to use machine learning to estimate the
contribution of individual attributes to disclosure attack. However, the main challenge with the
approach is its computational intensity and insensitivity to minority cases. This paper proposes
to improve the assessment of attribute vulnerability to disclosure attacks and reduce
computation overhead using adaptive outlier management, a fusion of data augmentation with
Conditional Tabular Generative Adversarial Network, balancing using Synthetic Minority
Over-sampling Technique for Nominal Data, and stratified sampling. The proposed approach
results in over 38% reduction in computation overhead. Sensitivity to vulnerable attributes was
also improved by up to 20.69%.

Keywords: Attribute vulnerability to disclosure attack, Data augmentation, Privacy preserving
anonymization; Privacy-Preserving data publishing.

INTRODUCTION health conditions and personal income, are
considered sensitive attributes (SAs). In this
context, the person whose information is
being collected is called the data subject, and
the organization that manages the data is
called the data controller.

The application of personal data in predictive
modelling and data analytics is becoming
increasingly common in many domains,
including healthcare and national planning.
Government agencies and  healthcare
providers can now collect, analyse, and  Privacy is a fundamental  human
leverage extensive medical and citizen data  right(Wachter, 2017). Thus, organizations
to forecast public health outcomes, plan  that handle personal data, whether private
community resources, and understand the  companies or government agencies (data

needs of different population  controllers), have a crucial responsibility to
segments(Abubakar et al., 2022; Saura et al.,  protect the privacy of the data subject when
2021). they share the data with analysts or

researchers. Consequently, privacy-

Information that can be used to identify a . o
specific person is called personal data, or preserving data publishing (PPDP) (Fung et

Personally Identifiable Information al., 2010; Mendes: & Vilela, 2017.) have
(PII)(Krishnamurthy et al, 2009). This cmerged as techniques for protecting the
includes direct identifiers (DIs) such as name, privacy of individuals whose records are in

and quasi-identifiers (QIs) such as birthday, Fhe. datasct. .It balagces makmg valuable
gender, and race. Some types of PII, like insights available with ensuring personal
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details remain undisclosed. PPDP techniques
are based on either cryptographic methods or
data anonymization.

Cryptographic techniques(Burkhalter et al.,
2021; Mustafa et al., 2018), offer better
protection but are computationally intensive.
Consequently, anonymization techniques,
where records in the dataset are transformed
into less specific and indistinguishable forms,
have also been developed(Abbasi &
Mohammadi, 2022; Machanavajjhala et al.,
2007; Rodriguez-Garcia et al., 2021; Song et
al., 2019; Sweeney, 2002). Specific
transformations for anonymization include
generalization and suppression. As an
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example, consider Table 1 as raw data
intended for publishing, generalization is the
process of converting specific quasi-
identifiers (QIs) into broader, less precise
ranges to maintain data privacy, as
exemplified by turning exact ages into age
groups in Table 1. Suppression is the process
of replacing original attribute values with the
asterisk (*) symbol. This technique partially
masks the attributes, making them less
significant. For example, in Table 2, the last
three digits of the QI attribute, Zip code,
were suppressed. In both Table 1 and Table
2, Salary column represents the Sensitive
Attribute.

Table 1: Raw data intended for publishing

Name Age Marital Status Zip code Sex Salary
Joe 21  Separated 24028 M  >50K
Jill 26  Single 24030 M >50K
Sue 32 Widowed 24035 F <50K
Abe 36  Separated 32035 F <50K
Bob 48  Widowed 32038 M >50K
Alex 58 Married 32042 F <50K

Table 2: Generalized Age attribute and suppressed Zip code

Name Age Marital Status Zip code Sex Salary
Joe 20-30 Separated 240%**” M >50K
Jill 20-30 Single 240%**” M >50K
Sue 30-40 Widowed 240%*" F <50K
Abe 30-40 Separated 320**” F <50K
Bob 45-60 Widowed 320%*” M >50K
Alex 55-60 Married 320**” F <50K
As data controllers handle sensitive approach that involves introducing noise to

information, the challenge is not only to
support useful analytics but also to do so
while protecting privacy(Guan et al., 2019;
Makhdoumi & Fawaz, 2013; Sankar et al.,
2010). Current methods often fail because
they apply anonymization uniformly without
properly assessing which data attributes are
most vulnerable to privacy breaches. This
oversight can lead to over-anonymized data
with reduced utility. Recently, there has been
growing attention to anonymization methods
centered on attributes. For example, Song et
al (Song et al, 2019)have introduced an
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numerical attributes and  generalizing
categorical attributes. Additionally, methods
exist for identifying and anonymizing Quasi-
Identifiers (QIs) in a manner that preserves
utility and privacy (L1 et al, 2022;
Rodriguez-Garcia et al., 2021). However, a
common drawback in many existing
approaches is the absence quantifiable
assessment of the vulnerability associated
with individual attributes. This lack of
vulnerability quantification, which could
leverage advanced techniques like machine



learning (ML), often results in higher utility
loss and weaker privacy guarantees.

Motivation

The work in (Majeed & Hwang, 2023)
proposed the use of machine learning,
specifically, Random Forest, to estimate the
vulnerability of quasi-identifiers (QIs) in
order to decide the level of anonymization
that should be applied to them. The
researchers built a Random Forest model and
checked how accurate it was (reference
accuracy). Then, they focused on one quasi
identifier (QI) and shuffled its values. With
the shuffled values, they ran the model again
and got a new accuracy score. The difference
between the original and the shuffled
accuracy scores indicates how important that
quasi-identifier (QI) was. A big difference
meant the original data had a lot of unique
values. When they shuffled these unique
values, it threw off the model’s accuracy a
lot. This means that quasi identifier (QI) is
vulnerable because it could be used to
identify someone and their sensitive
information even after the data is supposedly
anonymized(Zhang et al., 2019). Equations
(1) through Equation (5) in Section III
provide a theoretical analysis of the
approach proposed in(Majeed & Hwang,
2023).

The approach(Majeed & Hwang, 2023)
presented improvement over previous
attribute-centric privacy-preserving
techniques(Abbasi & Mohammadi, 2022; Li
et al., 2022; Majeed, 2019; Rodriguez-
Garcia et al., 2021; Rogovschi et al., 2022;
Song et al., 2019; Srijayanthi & Sethukarasi,
2023). The strength of the approach lies in
its robust assessment of dispersion. The use
of Random Forest allows for the creation of
an ensemble of decision trees to model the
relationship between the QIs and the SAs.
Random Forest is known for its robustness
and ability to handle high-dimensional data.
Nonetheless, the approach is
computationally intensive, which may lead
to scalability issues in practice. In addition,
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the approach is insensitive to minority quasi-
identifiers in the dataset. This paper proposes
to reduce the computation overhead,
improve sensitivity to vulnerable attributes,
and improve the approach’s scalability
through adaptive outlier management, fusion
of data augmentation with data balancing,
and stratified sampling.

MATERIALS AND METHODS

This section describes the materials and
methods used in this research which include
the adaptive outlier management, a fusion of
data augmentation with data balancing, and
data sampling.

Data Preprocessing

To implement the proposed approach, the
Adult dataset' was used. Tt is the dataset
commonly used as a benchmark in machine
learning. It contains anonymized data from
the 1994 U.S. Census and is publicly
available for research purposes. The
preprocessing phase focuses on cleaning and
preparing the data for further analysis. The
improved structure of the preprocessed table
(dataset), T becomes 7TQLY ], where QI =
{q1,92,....qm}, and Y = {y1,2,...,yn}. Missing
values were filled in with the most frequent
category for the categorical attributes and
with the average value for the numerical
attributes using a Simple Imputer - a
machine learning tool that belongs to the
scikit-learn library?.

Adaptive Outlier Management and
Vulnerability Estimation

Outlier management in privacy-preserving
data publishing is particularly important
because outliers can significantly skew
results if not handled properly. They might
represent rare but valid data points in the
data collection process. Suppressing outliers
completely can lead to biased conclusions
against the minority(Currie & Rohren, 2022).
On the other hand, giving outliers too much
weight can also distort the analysis(Majeed




& Hwang, 2023). Outlier management in
this paper is not adaptive. The data publisher
sets a threshold percentage for outlier
removal. Outliers exceeding the threshold
are removed if their impact can be
disregarded, but important outliers below the

DOI: 10.64290/bimagombe.v9i2A.1087

threshold are kept and might be augmented
even though they might be rare. The specific
outlier analysis and data augmentation for
both the numerical and the -categorical
attributes proposed in this paper are
presented in Algorithm 1.

Algorithm 1: Outlier Analysis and Data Augmentation

Require: 7 Table with columns gi1, gi2... gim

Require: zThreshold: Predefined z-score threshold, e.g., 3
Require: thresholdPercentage: Threshold percentage for outlier removal

Ensure: Outlier-managed table
: zThreshold < 3
: numeric columns «— select numeric data (7)
: outliers_dict «— &
: for each column ¢ in numeric columns do
z «— calculate z_scores (7]c])

outliers «— {i | |zi| > zThreshold}
outliers_dict[c] «<— outliers
: end for
9: total outliers «<— outliers_dict values ()

[a—

//Default z-score threshold

10: if numericalOutlierPercentage > thresholdPercentage then

11: AugmentNumerical(7)

12: end if

13: for each column c in columns of 7" do
14: if c is categorical then

15: minority class «— argmin_size(groupby(7]c]))
16: minority class data «— 7]7c] = minority class]

17:  end if
18: end for

19: if categoricalOutlierPercentage > thresholdPercentage then

20:AugmentCategorical(categoricalMinorityData)

21: end if
22: return the augmented dataset
The algorithm also identifies minority

classes within categorical variables (lines 13-
22 in Algorithm 1). More specifically, the
minority class is the specific value, Vi,
associated with the minimum cardinality,
n(V), in the specified column, ¢;, of the table
T. For a concrete example, let g1 represent
the ’race’ column in the Adult dataset.
Minority classes in the ’race’ column are the
specific values of race that appeared the least
in the column ’race’.

For the initial vulnerability estimation using
machine learning, this paper implemented,
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for replication, Equations (1) through
Equation (5) of Section 3 as in (Majeed &
Hwang, 2023). The implementation was
tested with the raw dataset and with the
different combinations of augmented,
balanced, and sampled datasets. Next section
presents our approach to reduce the
computation overhead, improve sensitivity to
vulnerable attributes, and improve scalability.



Data Augmentation and Balanced
Stratified Sampling (DABS)

Figure 1 represents the high-level
architecture of DABS. In the Figure 1, the
Conditional Generator is a component of a
Conditional Generative Adversarial Network
(CTGAN), a variant of Generative
Adversarial Networks (GANs)(Gui et al.,
2023). GANs are powerful tools for data
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augmentation, helping to artificially increase
the size and diversity of a dataset. This can
be useful for improving the performance of
various  machine learning ~ models,
particularly when dealing with limited data
and when traditional data augmentation
techniques, like rotations or flips(Cirillo et
al., 2021), may not be sufficient to capture
the true data distribution.

Random
Input

Conditional
Generator

Synthetic
Data

>

-
-
-
-
-
e
-
------

[ ————— e —————————

l

Discriminator

T Discrigiinator 1

| SMOTEN-nified Dataset |-—"

Figure 1: High-level representation of Data Augmentation and Stratified Sampling (DABS).

In particular, Conditional Tabular Generative
Adversarial Network (CTGAN)(Xu et al.,
2019) extends the conventional GAN
framework for the synthesis of structured
tabular data, ensuring that the synthetic
samples not only resemble the marginal
distribution of the original data but also
maintain conditional dependencies between
attributes. Rather than a simple Generator
that produces samples from random noise,
CTGAN uses a conditional generator, which
takes additional input in the form of
conditioning information, such as class
labels or attributes from the real dataset. This
conditioning  information  guides the
generation process, allowing the generator to
produce samples that align with specific
conditions or criteria.

Thus, in CTGAN, initially, a sample
condition is extracted from the real dataset
and fed into the conditional generator along

with the random input. This approach
enables the preservation of dependency
relationships(Xu et al., 2019). In the context
of DABS, the random input is fed into the
Conditional Generator component, and then
the component uses this input along with its
knowledge of the real dataset to produce
synthetic ~ data  that shares  similar
characteristics with the real data. The
discriminator component is trained to
distinguish between the real data (from the
original dataset) and the synthetic data
generated by the Conditional Generator.
Thus, it receives, as input, the synthetic data
generated by the Conditional Generator and
the real sample from the dataset. The
discriminator then makes a decision about
whether the synthetic data is realistic enough
to be indistinguishable from the real data.
This process helps the Conditional Generator
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to improve the quality of the synthetic data it
generates over time.

Although not shown in the diagram, the
synthetic data go through Synthetic Minority
Over-sampling Technique for Nominal Data
(SMOTEN) to have the dataset balanced.
SMOTEN is used in machine learning to
address the issue of class imbalance in

nominal data, which means data with
discrete  categories. It uses linear
interpolation between nearest neighbors

within the same class to generate synthetic
samples. This maintains the discrete nature
of the data. In addition, it is computationally
efficient for large datasets. The choice of
SMOTEN and CTGAN was informed by
extensive experiments in which SMOTEN

Algorithm: 2 Stratified Sampling
Require: N: Total population size
Require: N;: Size of stratum i

Require: n: Total sample size
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was found to be modest in model
performance but tends to generate data that
does not respect the distribution of the
dataset. On the other hand, CTGAN alone
tends to generate data that leads to model
overfitting. Overall when the data is
augmented with CTGAN and balanced with
SMOTEN, it tends to produce a large
number of data points. Thus, stratified
sampling was used to sample a fraction of
the dataset that retains its statistical
properties. Stratified sampling is a statistical
technique for drawing samples from a
population that ensures the sample
accurately reflects the proportions of
different subgroups (strata) within the
population. Algorithm 2 represents the
concise step from the stratified sampling.

Ensure: Sample size for each stratum »; for i = 1 to number of strata

: Calculate proportion per stratum:
: for each stratum i do
fi — NNi

: end for

: for each stratum i do
ni«—nxfi

1

2

3

4

5: Calculate sample size per stratum:
6

7

8: end for

9

: Return Sample Sizes:
10: Return the list of n; values

Algorithm 2 divides the population into
strata, calculates the proportion of each
stratum in the total population, determines
the sample size for each stratum based on
these proportions, and returns the sample
sizes for each stratum to ensure a
representative sample. The final processed
dataset may be subjected to grouping to
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create k-anonymized records that respect I-
diversity. In this work, the processed dataset
was grouped using Jaccard Similarity
(Equation 7 in Section 3).



Creating equivalence Classes using
Jaccard Similarity

In contrast to(Majeed & Hwang, 2023) that
used Cosine Similarity (see Equation 8 in
Section 3) to ensure maximum similarity
between users in creating equivalent classes
by grouping similar records, this work
utilizes the Jaccard Similarity index (see
Equation 7 in Section 3). The Jaccard
Similarity score is in the range of 0 to 1. If
the two records are identical, the Jaccard
Similarity is 1. The Jaccard similarity score
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is 0 if there are no common QIs between two
records. Algorithm 3 is used for grouping
records based on Jaccard Similarity. Notice
that Algorithm 3 also computes Entropy,
which is given in Equation 9. From Equation
9, a value of 0 means everyone in a group
has the same label (identical SA wvalues).
This makes it very easy to figure out
someone’s SA value, which is a privacy risk.
On the other hand, a value of 1 means there
is enough diversity in the label (diverse SA
values). This makes it difficult to guess any
one SA’s value, reducing the privacy risk.

r(c) =X pilogapi 9

Consequently, the wvulnerability value, 7,
from Equation 5 and the diversity value, I,
from Equation 9 should derive the adaptive
anonymization applicable to each group of k&
users whose similarity was computed using
the Jaccard Index (Equation 7). Intuitively,

Jaccard Similarity generally has a lower
overhead compared to Cosine Similarity.
This is because Jaccard Similarity involves
finding the intersection and union of sets,
which are relatively simple operations. This
translates to lower computational cost.

Algorithm 3: Group Records based on Jaccard Similarity and Calculate Entropy

Require: datasets

Require: threshold: Jaccard similarity threshold

containing the records tobe grouped

Ensure: groups: List of dictionaries containing groups and their respective entropies

1: num records < length of records
2: groups «— empty list

3: for i < 0 to num records — 1 do

4: group < [i] // Initialize a group with the current record

5: forj« i+ 1tonumrecords— 1 do

6 similarity < JaccardSim(dataset|[i],dataset[j])
7: if similarity > threshold then

8 group.append(y)

9 end if

10:  end for

11: group data < data sets|group]

12: probabilities < Probabilities(group data[’income’])
13: entropy «<— CalculateEntropy(probabilities)
14:  groups.append({’group’ group,’entropy’
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15: end for
16: return groups

In addition, Jaccard Similarity works well
with categorical features and most machine
learning tasks will likely require encoding of
the categorical features. In contrast, as
observed by(Khan et al., 2021), Cosine
Similarity involves calculating the dot
product and vector magnitudes, which
require more computations compared to set
operations. Furthermore, Cosine Similarity
often  works Dbetter with continuous
numerical data, which is not always the case.
However, the Jaccard similarity may not be
suited for all cases as the index may be a
poor metric if there are no positives for some
samples or classes. The key here is to be
adaptive to the specific dataset to be
published.

Evaluation Metrics

1)  Expressiveness of T
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Expressiveness of 7 refers to the level of
detail it offers in capturing the vulnerability
of an attribute. A highly expressive 7 would
provide a more pronounced score.

2)

Generally, in data processing applications,
computational complexity refers to the
amount of resources required by an
algorithm to process and analyze a dataset.
The complexity can be  measured
theoretically using asymptotic notation and
empirically by recording the actual running
time of the algorithm on a chosen machine.

3)

Computation overhead

F1 score

F1 score is used for the assessment of the
performance of a classification model by
considering both precision and recall.
Mathematically, F1 is defined by Equation
10.

Precision x Recall

R

Precision + Recall

(10)

The Precision and the Recall are given in Equations (11) and (12) respectively:

True Positive Predictions

Precision =

True Positive Predictions + False Positive Predictions

Recall =

True Positive Predictions

17

True Positive Predictions + False Negative Predictions

THEORY

Using Random Forest Model to Estimate
Attributes’ Vulnerability to Disclosure
Attack

The study in(Majeed & Hwang, 2023) found
that shuffling the QI values creates a unique
impact on each individual tree (Ti) within a

Tieg@iyi=i®)  Yie m)l(y:::f(i:?j)

Random Forest. This impact can be
represented as E (qi), where E refers to the
effect and qi represents the specific QI value
for the ith tree. The effect E of a particular
QI (e.g., qi) in the b can be determined via
Eq. 1:

E(@) = K ®)
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The first term of Equation 1 calculates the  where the values of gj are shuffled column-
accuracy of tree b on the OOB samples  wise.

where the values of ¢j are not shuffled. The
second term of Equation 1 calculates the
accuracy of tree b on the OOB samples

W _(E"@), ifqeb
V(E (q;)) B {0, otherwise 2

The value V (E(qj )) in b can lie in two types
depending upon the availability:

The V (E(g;)) = 0 if a g; is not part of b or encompasses only identical values in a column. The

mean (m ) of E for each QI from all trees is then determined using Eq. 3.

S Yl ()

mgi = ==
ntree ....................................

The mean, m 4, represents the average predictive power across all the trees in the forest.
The standard deviation, s4, and the vulnerability value (henceforth referred to as 7) are
calculated using Equations 4 and 5, respectively.

. 1 .
sqL = mZ?ﬂee(Et(QI) S [) 4
sqi
) 5
Mg

More specifically, the ensemble structure of  important role in the model’s decision-
Random Forest allows for a robust making process, suggesting a higher
evaluation of individual attribute importance potential for re-identification or disclosure if
across multiple trees. To estimate the  that attribute is exposed. The use of Random
vulnerability of each QI, for each tree in the Forest in this manner is particularly powerful
forest, the portion of data not used during  because it provides a systematic, data-driven
training—referred to as OOB samples—is  way to assess risk.

used for testing. The central idea is to
measure how much the predictive accuracy
of each tree is affected when the values of a  Z-statistics, or Z-scores, is a way to measure

specific QI are shuffled in these OOB  how far a particular data point is from the
samples. mean in a standard normal distribution which

is useful for finding outliers. Z score is
represented by Equation 6.

Z-statistics

By comparing the model’s accuracy before
and after shuffling the values of a QI, this
study was able to quantify the QI’s influence ~ In Equation (6) above, X is the data point, x
on the predictions as in(Majeed & Hwang, is the mean of the distribution and o is the
2023) A signiﬁcant dr()p in accuracy after standard deviation of the distribution.

shuffling indicates that the QI plays an  jaccard Similarity

Z = ) ©6)

ANnB

J(A,B) = || 7

RESULTS The box plot in Figure 2 shows a slight
reduction in the number of outliers after
removing outliers in the age attribute. This is
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evident by the shorter whiskers in the “After
Removing Outliers” plot compared to the
“Before Removing Outliers” plot. Similarly,
the Interquartile Range (IQR) which is the
distance between the first and third quartiles,
is relatively smaller in the ”After Removing
Outliers” plot compared to the “Before
Removing Outliers” plot. This indicates that
the overall spread of the data is reduced after
removing outliers, making the data more
concentrated around the middle quartiles.

Before Removing Outliers
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However, the outlier in age was only
removed because it was negligible, in this
case, and it may not introduce bias to certain
age groups. For the race attribute, to avoid
being biased against the minority race, we
augmented the minority data with CTGAN
even though the ratio of the minority race to
the majority is 1:120! Before the data
augmentation, the sample of the minority
‘race’ attribute is printed and shown in
Figure 3.

After Removing Outliers

920 o

|

g

|

1

1

Figure 2: Adult Dataset with outliers in age vs when the outliers in age have been removed.

Y

:: o print{minority_class_race data[[‘age’, 'race’, 'native_country',’inceme’]])

(1)
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Other
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32075
132
30263
343
544

[271 Pows % & columns ]

Japan

Hicaragua
Hexico
Other United-States
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Uther United-States
Other United-States
Other United-States
Puerto-Rico
Puerto-Rico

25K
4e5BK
<e5iK
50K
¢=50K

{=50K

G4

<=5k
£=50K
<58k

Figure 3: Sample of minority ‘race’ in the Adult dataset.

The snapshot data in Figure 4 is totally
synthetic but notice how it resembles the
original data. As a matter of fact, the
evaluation of how well the distributions of
individual columns in the synthetic data
match those in the real data, using
Kolmogorov-Smirnov (KS) statistic and
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Total Variation (TV) complement, suggested
high quality of some of the generated data in
some attributes such as age. The next section
presents the results of how our approach
improves the sensitivity to the detection of
vulnerable  attributes  through  more
expressive T values.
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; ° print(synthetic_data[['age', 'race', 'native_country','income']])

age  race

67 Other
41 Other
30 Other
54 Other

B T N ]

32571 49 Other

native_country income
74 Other Dominican-Republic <=58K
United-States <=50K
Mexico «¢=30K
Mexico <¢=50K
Columbia <¢=50K

Canada <=50K

32572 42 Other Dominican-Republic <=56K

33573 41 Other
32574 38 Other
32575 26 Other

[32576 rows x 4 columns]

P ¢=50K

Nicaragua <=56K
Columbia <=56K

Figure 4: Sample of the synthetically generated data based on minority ‘race’ in the Adult
dataset.

Sensitivity to Vulnerable Attribute

Looking at Figure 5, it is clear that even with
a smaller dataset DABS, shows more
sensitivity to vulnerability than the existing
approach(Majeed & Hwang, 2023). This is
because, DABS has incorporated data
augmentation, balancing, and stratified
sampling, leading to a potentially more
expressive 7. Notice that in both approaches,
age appeared to be more vulnerable to
disclosure attacks. In DABS, the next more

vulnerable attribute is race, thanks to the
augmentation using CTGAN, otherwise it
could not have been detected as vulnerable
to disclosure since the minority races would
have been diluted or wiped in the inference.
This underscores the utility of our approach
compared to the status quo. Both approaches
rank sex as more vulnerable than native
country. However, the wvulnerability of
‘Native Country’ attribute in DABS is more
pronounced as a result of the cascading
effect of augmenting the ‘race’ attribute.

Sensitivity to vulnerable attributes

14

12 4

10

Values

—&— Benchmark
—o— DABS

T T
Age Race

T T
Sex Native Country

Attributes

Figure 5: Sensitivity to Vulnerable Attributes: DAS vs Status Quo(Majeed & Hwang, 2023).

Computation Overhead

We evaluated the computational overhead of
DABS by measuring and comparing its

execution time with that of the
benchmark(Majeed & Hwang, 2023) when
computing the 7 values of four attributes (age,
race, sex, and native country) in the adult



dataset. We used Jupiter Notebook running
on a Windows machine with an Intel(R)
Core(TM) 17-4600M CPU 2.90GHz, 2.90
GHz, and 16GB of RAM. The Benchmark
took 3,664.780069589615 seconds, which
translates to approximately 1.02 hours.
However, DABS took only
2,284.66241312027 seconds, or roughly 0.63
hours, representing a reduction in execution
time of 38.24%. This improvement is
attributed to our approach’s utilization of
data augmentation and stratified sampling to
reduce the dataset size while preserving its
statistical properties.
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F1 Score

As shown in Fig. 6, DABS achieves the
highest F1 score (0.81) indicating maintains
the best performance. CTGAN + SMOTEN
shows improvement over CTGAN alone,
suggesting that data augmentation with
synthetic data and balancing the class
distribution can be beneficial. Raw and
Sampled Raw have lower F1 scores, which
means that directly using the raw data or
simply sampling it might not be the most
effective approach for this task.

F1l Scores by Dataset

0.8 BN Fl Score
0.7
0.6
0.5

0.4 1

F1 Score

0.3

0.2 1

0.1 1

0.0 -

Datasets

Figure 6: F1 score.

DISCUSSION

The findings of age as the most vulnerable
attribute in the Adult dataset are consistent
with the finding in the benchmark work.
Albert in our approach, the vulnerability is
relatively more  pronounced in the
benchmark work, the wvulnerability of
attributes related to minority races might be
underestimated due to a lack of data points.
Thus, patterns observed in the majority
group might be misinterpreted as
representing  the  entire  population.
Consequently, the detection of race as
vulnerable next to age in our approach
underscores the utility of the proposed
adaptive outlier management. Specifically,
the utilization of CTGAN to augment the
data for minority races was proved useful.
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More clearly, DABS help to identify race as
the next most vulnerable attribute, likely due
to the effectiveness of CTGAN in addressing
the minority data imbalance. The implication
is that without augmentation, race
vulnerability might have been missed.
Overall DABS shows increased sensitivity in
detecting vulnerable attributes, even with a
smaller dataset. This is attributed to DABS’
techniques like data augmentation, balancing,
and stratified sampling. DABS achieves a
substantial reduction (over 38%) in
execution time compared to the benchmark
approach(Majeed & Hwang, 2023) This is
expected as the dataset was sampled in strata
to preserve the statistical properties of the
dataset. However, while data augmentation
and stratified sampling improve efficiency,



there might be a slight decrease in the
accuracy of 7 scores compared to using the
entire dataset.

CONCLUSION

This paper proposes an approach to
enhance privacy preservation and data utility
in personal data management. Through the
development of ML-based adaptive outlier
management and the introduction of Data
Augmentation and Balanced Stratified
Sampling (DABS), significant strides have
been made in reducing computation
overhead and improving accuracy in
vulnerability  estimation. By replacing
Cosine Similarity with Jaccard Similarity,
computation overhead has been reduced by
over 38%, while sensitivity to vulnerable
attributes has been improved by up to
20.69%. Moving forward, this research calls
for the implementation of reusable and
flexible libraries, consideration of attribute
vulnerability in  privacy  preservation
frameworks, and the integration of fairness
awareness in machine learning models.
External validation and refinement of
evaluation metrics are equally essential for
ensuring the reliability and effectiveness of

privacy preservation techniques across
diverse contexts.
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