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ABSTRACT

Skin cancer remains a significant global health challenge, with early and accurate diagnosis being
crucial for effective treatment. However, traditional diagnostic methods—such as visual
inspection and histopathological analysis—are often constrained by subjectivity, limited access to
specialists, and time delays, leading to misdiagnoses and suboptimal outcomes. Recent studies
have explored deep convolutional neural networks (DCNNs) for automated skin lesion
classification, yet their performance varies significantly across different lesion types, especially
for visually similar or underrepresented classes. Motivated by these limitations, this study
proposes an improved classification framework that combines fine-tuned pretrained DCNN
models with enhanced feature selection techniques to improve diagnostic accuracy and robustness.
Using the HAM10000 dataset comprising 10,015 dermoscopic images, the framework integrates
preprocessing (resizing, normalization, augmentation), transfer learning with models like VGG16,
Inception V3, Inception ResNet V2, and DenseNet201, and an improved slime mould algorithm
(SMA) for feature optimization. Performance was evaluated using Receiver Operating
Characteristic (ROC) curve analysis, with Area Under the Curve (AUC) values ranging from
73.2% for melanoma to 92.6% for basal cell carcinoma. These results underscore the framework’s
potential to enhance early detection of skin cancer, offering a scalable and reliable diagnostic aid
for clinical dermatology.

Keywords: Skin lesion classification, Deep convolutional neural networks (DCNNs), HAM10000
dataset, Feature selection, ROC analysis

INTRODUCTION diagnostic methods. Traditional
dermatological diagnosis, primarily based
on visual examination and histopathological
analysis, is considered the gold standard but
has several limitations. The process can be
lengthy, requiring multiple patient visits, and
diagnostic accuracy depends heavily on the
expertise of dermatologists (Tuknayat et al.,
2023). Consequently, misdiagnosis and
delayed treatment are not uncommon,
potentially compromising patient outcomes
(Richens et al., 2020).

Skin diseases, including various forms of
skin cancer, are increasingly becoming a
global health concern. According to the
World Health Organization (WHO), skin
disecases are among the most common
human health conditions, affecting nearly
900 million people worldwide at any given
time (Hasan et al., 2023). The American
Cancer Society estimates over 100,000 new
melanoma cases in the United States
annually, significantly contributing to

morbidity and mortality (Siegel et al., 2024). Despite the advancements in deep
This growing prevalence highlights the convolutional neural networks (DCNNs) for
urgent need for more efficient and reliable skin lesion classification, several limitations
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persist in existing studies. Many models
exhibit inconsistent performance across
lesion types, particularly with classes such
as melanoma and benign keratosis-like
lesions, which are visually similar and often
underrepresented in datasets (Liu et al., 2024;
Zhang et al., 2025). Furthermore, the heavy
reliance on  high-end computational
resources in most studies limits their
scalability in low-resource settings (Nguyen
& Omar, 2024). Existing research also lacks
optimized fine-tuning  strategies and
effective feature selection mechanisms,
which can result in poor generalization and
reduced clinical applicability (Chen et al.,
2025). These issues highlight the urgent
need for more computationally efficient and
generalizable frameworks tailored to diverse
healthcare environments.One key resource
driving progress in this field is the
HAMI10000 dataset, a comprehensive
collection of 10,015  high-resolution
dermoscopic images annotated by expert
dermatologists (Ahmad et al., 2023). The
dataset encompasses a wide range of skin
lesion types, including melanocytic nevi,
melanomas, and benign keratoses, making it
an ideal benchmark for training and
evaluating DCNN models (Wu et al., 2022).
However, despite the promising results of
pretrained DCNN models such as VGG16,
Inception V3, Inception ResNet V2, and
DenseNet 201, several challenges remain.
The model's performance varies across
lesion types, with lower classification
accuracy for melanoma (AUC: 73.2%) and
benign keratosis-like lesions (AUC: 75.0%),
indicating the need for improved feature
extraction and class-balancing techniques.
Computational efficiency also poses a
challenge, as deep learning models require
substantial GPU resources, limiting their
deployment in resource-constrained settings.
Additionally, while transfer learning
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enhances performance, fine-tuning strategies
must be further optimized to achieve
dermatologist-level  diagnostic  accuracy
while maintaining efficiency. Future work
should explore advanced augmentation
techniques, hybrid deep learning
architectures, and improved feature selection
methods to enhance model generalization
and clinical applicability.  Achieving
dermatologist-level  diagnostic  accuracy
while ensuring computational efficiency is a
critical hurdle for the practical deployment
of these models in clinical settings (An et al.,
2024). Fine-tuning strategies, which involve
adapting pretrained models to specific tasks,
play a vital role in balancing performance
and resource requirements (Alzubaidi et al.,
2021).

This paper focuses on optimizing pretrained
DCNN models for skin lesion classification
using the HAMI0000 dataset. By
systematically exploring fine-tuning
strategies, it aims to achieve high diagnostic
accuracy while minimizing computational
demands. The findings of this research have
the potential to improve early detection and
treatment of skin diseases, making high
quality dermatological care more accessible
and efficient across diverse healthcare

environments.

LITERATURE REVIEW
Recent advancements in artificial
intelligence ~ (AI), particularly  deep

convolutional neural networks (DCNNSs),
have significantly improved the accuracy of
medical image analysis. In dermatology,
DCNNs have demonstrated performance
comparable to experienced dermatologists in
skin lesion classification, addressing
limitations of traditional diagnostic methods.
This section reviews existing studies on
DCNN models, including VGG16, Inception
V3, Inception ResNet V2, and DenseNet



201, focusing on their architectures, fine-
tuning strategies, and performance in
medical imaging. The review also highlights
the importance of datasets like HAM10000
in advancing skin lesion classification.
Research gaps and opportunities for
optimizing model performance and
computational efficiency are also discussed.

Skin Lesion Classification

Accurate skin lesion classification is of
paramount importance in dermatology due
to its direct impact on patient outcomes
(Behara et al., 2024). Skin lesions can range
from benign growths, such as moles and
warts, to malignant tumors like melanoma,
which is the most serious type of skin cancer
according to Greco and Bhutta (2024). Early
and precise identification of malignant
lesions is crucial for successful treatment
and prognosis. Misclassification or delayed
diagnosis can lead to advanced stages of
skin cancer, which are often more difficult to
treat and associated with higher morbidity
and mortality rates according to Melarkode
et al. (2023). Therefore, improving the
accuracy of skin lesion classification can
significantly enhance the early detection and
management of skin cancers, ultimately
saving lives and reducing healthcare costs.

Skin diseases, including skin cancer, present
significant public health challenges globally,
and Nigeria is no exception. Skin cancer, in
particular, arises due to the uncontrolled
growth of abnormal skin cells, often caused
by excessive exposure to ultraviolet (UV)
radiation from the sun or artificial sources
like tanning beds (Hasan et al., 2023).
Common forms of skin cancer include
melanoma, squamous cell carcinoma, and
basal cell carcinoma (Gruber and Zito,
2023). These cancers manifest with
symptoms such as new growths or sores that
do not heal, changes in existing moles, or
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abnormal pigmentation. The early detection
of skin cancer is crucial for -effective
treatment, yet in regions with limited
healthcare infrastructure like Nigeria, timely
diagnosis can be a significant barrier
(Omotoso et al., 2023). This, coupled with
rising UV exposure due to climate change,
underscores the urgent need for effective
public health interventions.

Medical personnel typically carry out skin
cancer diagnoses using a combination of

visual examination, dermoscopy, and
histopathological analysis (Mendes and
Krohling, 2022). Dermoscopy, a non-

invasive technique, involves the use of a
specialized magnifying device to assess the
structure of skin lesions, revealing details
invisible to the naked eye (Sonthalia et al.,
2023). For suspicious lesions, a biopsy is
often conducted, where a small portion of
the skin is surgically removed and examined
microscopically for malignancy (Ramsey
and Rostami, 2023). Advanced imaging
techniques and artificial intelligence (Al)
tools are also being integrated into
diagnostic workflows to enhance the
precision of diagnoses. However, in many
parts of Nigeria, access to such advanced
diagnostics remains limited, with rural areas
depending largely on visual inspection by
healthcare workers, which increases the risk
of misdiagnosis (Opeyemi et al., 2024).

The prevalence of skin cancer in Nigeria is
relatively low compared to other regions,
such as Australia or North America, but the
disease remains underreported due to
insufficient healthcare services and low
awareness among the population (Omotoso
et al., 2023). The tropical climate of Nigeria,
with intense year-round sun exposure, puts
individuals at heightened risk of UV-related
skin conditions (Arijaje et al., 2022). Among
the general population, those with lighter
skin tones or albinism are at particular risk



due to the lack of protective melanin. Health
campaigns that raise awareness about skin
cancer prevention, early detection, and the
importance of protective measures against

Deep Learning in Medical Image Analysis

Deep learning techniques, particularly deep
convolutional neural networks (DCNNs),
have revolutionized the field of medical
image analysis by providing powerful tools
for automated image  classification,
segmentation, and detection tasks according
to Manakitsa et al. (2024). DCNNs, a
specialized type of neural network, are
designed to process data with grid-like
topology, such as images. They consist of
multiple layers of neurons, including
convolutional layers, pooling layers, and
fully connected layers, which work together
to learn hierarchical representations of input
data (Taye, 2023). The convolutional layers
apply filters to the input image to detect
low-level features like edges and textures,
while deeper layers combine these features
to recognize more complex patterns and
structures (Singh et al., 2023).

One of the main advantages of DCNNs in
medical image analysis is their ability to
learn directly from raw data without
requiring handcrafted feature extraction (Li
et al., 2023). This capability allows DCNNs
to automatically discover the most relevant
features for a given task, often surpassing
human-designed algorithms in performance
(Sarker, 2021). For instance, in skin lesion
classification, DCNNSs can learn to identify
subtle differences in color, texture, and
shape that may be indicative of malignant
conditions. Additionally, DCNNs can handle
large datasets and continuously improve
their accuracy as more labeled data becomes
available. Another significant benefit of
DCNN s is their robustness to variations in
the input data (Tulbure et al., 2022). Medical
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UV exposure could significantly reduce the
burden of skin diseases in Nigeria (Horvath
etal., 2021).

images can vary widely due to differences in
imaging modalities, acquisition settings, and
patient  conditions. = DCNNs, through
extensive training on diverse datasets, can
generalize well to new, unseen images,
making them highly effective for clinical
applications (Hassanzadeh et al.,, 2022).
Moreover, DCNNs can be fine-tuned on
specific medical datasets, leveraging pre-
trained models from related tasks, which
reduces the need for extensive labeled data
and computational resources (Heikal et al.,
2024).

Pretrained DCNN Models
VGG16

VGG16 is a deep convolutional neural
network architecture proposed by the Visual
Geometry Group at Oxford University. It is
known for its simplicity and depth,
consisting of 16 weight layers, including 13
convolutional layers and 3 fully connected
layers (Khalif et al., 2024). The key design
principle behind VGG16 is the use of small
(3x3) convolutional filters, which allows for
deeper networks with fewer parameters
compared to larger filter sizes (Salehi et al.,
2023). This architecture has become a
benchmark in the field of computer vision
due to its strong performance on the
ImageNet dataset, achieving top-5 accuracy
of 92.7%. VGGI16's straightforward and
uniform design makes it a popular choice for
transfer learning and fine-tuning in various
image classification tasks, including medical
image analysis (Hajam et al., 2023).

Inception V3

Inception V3 is an advanced deep learning
model developed by Google as part of the



Inception family of networks, also known as
GoogleNet (Zhou et al, 2022). The
Inception architecture introduces the concept
of inception modules, which allow the
network to capture multi-scale features by
performing convolutions with multiple filter
sizes (1x1, 3x3, 5x5) in parallel within a
single layer (Shi et al., 2024). Inception V3
builds on its predecessors by incorporating
factorized convolutions, aggressive
Inception ResNet V2

- DenseNet 201

DenseNet (Dense Convolutional Network)
introduces an innovative approach to
connectivity within a neural network. In
DenseNet architectures, each layer receives
input from all preceding layers and passes
its output to all subsequent layers (Zhou et
al., 2022). This dense connectivity pattern
enhances feature reuse, reduces the number
of parameters, and alleviates the vanishing
gradient problem (Yin et al, 2022).
DenseNet 201, a deeper variant with 201
layers, achieves a top-5 accuracy of 94.8%
on the ImageNet dataset. Its efficient use of
parameters and strong feature propagation
capabilities make it particularly effective for
complex image classification tasks (Ahmed
et al, 2023). DenseNet 201's unique
architecture and high performance have

SLCDCNN Framework

Figure 1 illustrates the proposed SLCDCNN
(Skin Lesion Classification using Deep
Convolutional Neural Networks) framework,
which outlines the steps for building an
efficient skin lesion classification system.
This framework integrates multiple
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regularization, and auxiliary classifiers to
improve convergence and reduce overfitting
(Cao et al., 2021). This model achieves a
top-5 accuracy of 94.4% on the ImageNet

dataset, demonstrating excellent
performance in capturing complex patterns
in images. Inception V3's modular

architecture and high accuracy make it well-
suited for fine-tuning on specific datasets,
such as those in medical imaging.

proven beneficial in medical image analysis,
where capturing fine details and maintaining
high classification accuracy are crucial

MATERIALS AND METHODS

This paper utilizes the HAM 10000 dataset to
develop an  accurate skin  lesion
classification framework using pretrained
deep  convolutional neural networks
(DCNN ). Preprocessing techniques such as
image resizing, normalization and data
augmentation were applied to enhance data
quality. Four DCNN models which are
VGG16, Inception V3, Inception ResNet V2,
and DenseNet 201 were fine-tuned using top
layer, layer-wise, and full-model strategies.
Model performance was evaluated using
accuracy, precision, recall, Fl-score, and
computational efficiency, with statistical
validation through cross-validation and
ANOVA to ensure reliability.

advanced techniques, including data
preprocessing, transfer learning, feature
fusion, and feature selection, to optimize the
performance of pretrained deep
convolutional neural networks (DCNNs) for
skin lesion classification. Each component
of the framework plays a vital role in
improving the accuracy and generalizability
of the model.
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Figure 1: Skin Lesion Classification using Deep Convolutional Neural Networks Framework.

The process begins with data collection and
preprocessing to ensure the input images
meet the requirements of the selected DCNN
models. The HAM10000 dataset serves as
the primary data source, comprising
dermoscopic images representing various
types of skin lesions. Preprocessing includes
resizing all images to 224x224 pixels to
match the input size of the models, followed
by min-max normalization to scale pixel
values to the range [0, 1], which facilitates
faster convergence during training. Data
augmentation techniques such as rotation,
flipping,  zooming, and  brightness
adjustment are applied to increase the
dataset’s variability and reduce the risk of
overfitting.

The core of the SLCDCNN framework is
transfer learning, where pretrained DCNN
models which include VGG16, Inception V3,
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Inception ResNet V2, and DenseNet 201 are
fine-tuned for the specific task of skin lesion
classification. Three fine-tuning strategies
are employed: top-layer fine-tuning (where
only the top layers are retrained), layer-wise
fine-tuning (selectively retraining specific
layers), and  full-model  fine-tuning
(retraining all layers). Transfer learning
allows these models to leverage knowledge
from large datasets like ImageNet and adapt
to the target dataset, improving performance
with limited computational resources.

To enhance the classification accuracy, a
serial-based feature fusion technique is
employed. This process combines the
features extracted from multiple DCNN
models to capture a broader range of
patterns and characteristics from the input
images. Feature fusion integrates
complementary strengths of different models,



resulting in a more comprehensive feature
representation that significantly improves
the model's classification performance.

An improved slime mould algorithm (SMA)
is employed for feature selection, optimizing
the feature set by identifying the most
relevant  features  while  eliminating
redundant or irrelevant ones. Initially, the
dataset contained 7 features, including lesion
type, age, and anatomical site. After
applying SMA, the feature space was
reduced to 5 selected features, enhancing
both computational efficiency and the
accuracy of the subsequent classification
process. These selected features are crucial
for constructing a robust model that
generalizes effectively across various skin
lesion types.

The features, age, sex, localization,
image id, and lesion id are passed to
support vector machines (SVM) and random
forests, to perform the final classification.
The performance of the SLCDCNN
framework is evaluated using accuracy,
precision, recall, and Fl-score. The
performance of the SLCDCNN framework
is evaluated using several key metrics to
ensure its effectiveness in classifying skin
lesions accurately and efficiently. Accuracy
represents the overall correctness of the
model by measuring the proportion of
correctly classified cases among all
predictions. Precision indicates how reliable
the model's positive predictions are by
assessing the proportion of correctly
identified positive cases. Recall, also known
as sensitivity, measures the model’s ability
to detect actual positive cases, ensuring that
relevant instances are not overlooked. The
Fl-score balances precision and recall,
making it particularly useful when dealing
with imbalanced datasets where one class
may be more prevalent than others.
Computational efficiency is assessed in
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terms of training time and resource
utilization, ensuring the model can be
deployed in real-world settings without
excessive computational demands.
Additionally, the Receiver Operating
Characteristic (ROC) Curve illustrates the
model’s  performance across  various
classification thresholds by analyzing the
trade-off between correctly identifying
positive cases and mistakenly classifying
negatives as positives. The Area Under the
Curve (AUC) provides a single numerical
value summarizing the model’s overall
ability to distinguish between classes, with

higher values indicating stronger
classification performance.
Accuracy:
_ +
Accuracy = " FR—— (D)
Precision:
Precision = (2)

Recall:

Recall = (3)
F1-Score:

F1-Score

Precision Recall
=2 @)

Precision + Recall

Computational Efficiency: Measured in
terms of training time and resource
utilization.

Receiver Operating Characteristic (ROC)
Curve:

TPR = (5)

FPR= (6)
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Where TPR is the True Positive Rate and
FPR is the False Positive Rate.

Area Under the Curve (AUC):
1
AUC = TPR(FPR) (FPR) (7)
0

Cross-validation ensures the robustness of
the results, while ANOVA tests are used for
statistical analysis and comparison of
different fine-tuning strategies.

The evaluation metrics used in this study are
essential for assessing the performance and
robustness of the proposed classification
model. Accuracy (Equation 1) measures the
overall correctness of the model by
calculating the ratio of correctly predicted
instances (True Positives [TP] and True
Negatives [TN]) to the total predictions,
including False Positives [FP] and False
Negatives [FN]. Precision (Equation 2)
evaluates the reliability of positive
predictions by determining the proportion of
actual positives among all predicted
positives. Recall (Equation 3), also known
as sensitivity, measures the model’s ability
to correctly identify actual positive instances.
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F1-Score (Equation 4) is the harmonic mean
of Precision and Recall, providing a
balanced measure particularly useful in
imbalanced datasets. Computational
Efficiency is assessed in terms of training
time and hardware resource utilization,
indicating the practicality of model
deployment. The Receiver Operating
Characteristic (ROC) Curve is based on the
True Positive Rate (TPR) (Equation 5),
which is equivalent to Recall, and the False
Positive Rate (FPR) (Equation 6), which
measures the proportion of negative
instances incorrectly classified as positive.
The Area Under the Curve (AUC) (Equation
7) represents the integral of TPR over FPR
across all thresholds and provides a scalar
value summarizing the model’s ability to
distinguish between classes, with higher
values indicating stronger classification
performance.

Preprocessing HAM 10000 data

Figure 2 displays a sample batch of 64
images from the HAM10000 dataset, which
were processed and prepared for training in
the skin lesion classification task.

1400

Figure 2: Batch Image from HAM10000 dataset.



Each image was resized to 224x224 pixels
to meet the input requirements of the
pretrained deep convolutional neural
network (DCNN) models. This
preprocessing step ensures uniformity in
image dimensions, facilitating efficient
training and reducing computational
overhead. The batch highlights the diversity
of skin lesion types within the dataset,
reflecting the real-world variability essential
for developing a robust and generalized
classification model. The visualized batch
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represents a critical component of the
model’s learning process, exposing it to a
wide range of patterns for improved
performance and adaptability.

Figure 3 represents each numeric label
corresponding to a specific type of skin
lesion: 0 for Actinic Keratoses (AKIEC), 1
for Basal Cell Carcinoma (BCC), 2 for
Benign Keratosis-like Lesions (BKL), 3 for
Dermatofibroma (DF), 4 for Melanoma
(MEL), 5 for Melanocytic Nevi (NV), and 6
for Vascular Lesions (VASC).

= I
: . I '
&
o
o 1 z a a = -

Skin Lesion

Figure 3: Class distribution of training batch.

The chart in Figure 3 shows that BKL (class
2) and VASC (class 6) are the most
represented lesions in this batch, each
appearing over 10 times, while MEL (class 4)
is the least represented, with fewer than 6
samples. Monitoring such distributions is
essential during training, as imbalanced
batches can bias the model towards
overrepresented classes, reducing its ability
to generalize across underrepresented
categories. This observation underscores the
importance ~ of  data  augmentation,
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oversampling, or class weighting techniques
to ensure a balanced and fair representation
of all lesion types for effective training.

The architecture summary of the neural
network model wused for skin lesion
classification, showcasing each layer, its
output shape, and the number of trainable
parameters. This summary highlights the
integration of a pretrained MobileNetV2
backbone with additional dense layers for
classification.
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Figure 4: Architecture Summary.

Figure shows that the input layer, labeled as
Image RGB In, accepts images of shape
224x224x3, representing resized RGB
images from the HAM10000 dataset. The
first layer introduces Gaussian noise to the
input, with the goal of improving model
robustness and preventing overfitting. The
core feature extractor is the pretrained
MobileNetV2 model, which outputs feature
maps with dimensions 7x7x1280. This is
followed by a batch normalization layer to
stabilize and accelerate the training process.

Subsequent layers include a flattening
operation, which reshapes the output into a
one-dimensional vector of 62,720 features.
A dense (fully connected) layer with 256
units, coupled with dropout layers (at a rate
of 0.5), helps reduce overfitting by randomly
deactivating neurons during training. The
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final dense layer has 7 units with a softmax
activation function, corresponding to the 7
classes of skin lesions in the dataset.

The total number of parameters in the model
is approximately 18.3 million, of which
16.06 million are trainable, while 2.26
million are non-trainable (frozen during
training due to the use of a pretrained
MobileNetV2 backbone). This architecture
strikes a Dbalance between leveraging
pretrained feature extraction and
incorporating customized dense layers for
the specific classification task.

RESULTS AND DISCUSSION

Figure 5 represents the Training and
validation loss (left) and binary accuracy
(right) curves for the deep learning model
over 25 epochs, illustrating the model’s
performance during training.
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Figure 5: Training vs Validation (loss and accuracy).

Binary accuracy refers to the proportion of
predictions where the model correctly
classifies an input as one of two possible
classes typically used when evaluating
classification models in a binary or one-vs-
all multiclass setting. In this study, although
the problem involves multiple classes, the
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training process utilizes a one-vs-all strategy,
hence binary accuracy becomes a relevant
metric. It measures how well the model
distinguishes each individual class against
all others during training.



The training loss curve shows a consistent
and substantial decrease over the 25 epochs,
dropping from an initial value of
approximately 1.8 to under 1.0 by the final
epoch. This indicates effective learning by
the model during the training process. The
validation loss exhibits some fluctuations,
which is expected due to the variability in
the validation data, but it generally stabilizes
around the 1.0 mark, reflecting the model's
ability to generalize well without significant
overfitting.

The binary accuracy curves further support
the model's strong performance. The training
accuracy shows a steady improvement,
rising from around 0.4 at the start to
approximately 0.7 by the end of training.
Validation accuracy remains consistently
higher than the training accuracy throughout
the epochs, peaking at approximately 0.8.
This pattern suggests that the model is
learning effectively and has not overfit to
the training data, demonstrating good
generalization capabilities. Overall, these
trends confirm that the model is well-
optimized and capable of accurately
classifying skin lesion images.

Figure 5 represents the visualization of
model classification for different types of
skin lesions from the HAM10000 dataset,
showing predicted class probabilities
alongside the actual images. The
HAM10000 dataset, which comprises seven
distinct types of skin lesions, Actinic
keratoses and intraepithelial carcinoma
(AKIEC), Basal cell carcinoma (BCC),
Benign  keratosis-like  lesions (BKL),
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Dermatofibroma (DF), Melanoma (MEL),
Melanocytic nevi (NV), and Vascular lesions
(VASC) was used to train the deep learning
model for skin lesion classification. By
leveraging this diverse dataset, the model
was exposed to a wide range of lesion types,
enabling it to learn distinctive features
associated with each category. This
comprehensive training ensures that the
model can accurately classify skin lesions
within  these  predefined  categories,
enhancing its reliability and effectiveness in
automated dermatological diagnosis.

Both metrics provide insight into the
model’s learning behavior. Training loss
reflects how well the model fits the training
data, while validation loss measures how
well the model generalizes to unseen data. In
this study, the training loss showed a steady
decline across epochs, indicating effective
learning from the training data. The
validation loss initially decreased but then
plateaued, with minor fluctuations, a
common pattern that suggests the model has
achieved a good balance between
underfitting and overfitting. The close
alignment of the two loss curves throughout
training indicates that the model generalizes
well without significant overfitting, thus
validating the effectiveness of the applied
preprocessing and fine-tuning strategies.

The Area Under the Curve (AUC) values are
provided for each class, offering a
quantitative measure of classification
performance. Higher AUC values indicate
better discrimination capabilities of the
model for the respective lesion type.
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Figure 6: ROC curve for each skin lesion type.

Melanocytic Nevi (AUC: 81.6%): The
ROC curve for Melanocytic Nevi
demonstrates good performance, with an
AUC of 81.6%. This indicates that the
model is  reasonably  effective at
distinguishing between positive and negative
samples for this lesion type. While the curve
trends well toward the top-left corner of the
graph, there is still room for improvement,
as some misclassifications are present. The
relatively high AUC reflects the model's
capability to leverage the distinct features of
Melanocytic Nevi.

Melanoma (AUC: 73.2%): The model's
performance for Melanoma is moderate,
with an AUC of 73.2%. The ROC curve
shows more overlap between true positives
and false positives compared to other classes,
suggesting  challenges in  accurately
identifying this lesion type. This lower AUC
may be due to the visual complexity of
melanoma or its similarity to other lesion
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types. Additional training data and targeted
augmentation could help improve the
model's sensitivity and specificity for
Melanoma.

Basal Cell Carcinoma (AUC: 92.6%): The
model performs exceptionally well for Basal
Cell Carcinoma, with an AUC of 92.6%.
The ROC curve is very close to the ideal

top-left corner, indicating strong
discrimination  between  positive  and
negative cases. This high performance

highlights the model's ability to extract and
utilize features specific to Basal Cell
Carcinoma effectively, making it one of the
best-classified lesion types.

Actinic Keratoses (AUC: 87.8%): The
ROC curve for Actinic Keratoses shows
strong performance, with an AUC of 87.8%.
The model demonstrates reliable
differentiation between true positives and
false positives, although a slight overlap in



probabilities exists. This high AUC suggests
that the model has effectively learned the
features of this lesion type, though further
optimization could further reduce errors.

Vascular Lesions (AUC: 92.1%): The
model shows excellent performance for
Vascular Lesions, with an AUC of 92.1%.
The ROC curve is very close to the ideal
shape, indicating the model's ability to
accurately distinguish between positive and
negative samples for this class. This superior
performance can be attributed to the distinct
visual characteristics of vascular lesions,
which the model captures effectively.

Benign Keratosis-like Lesions (AUC:
75.0%): The model's performance for
Benign Keratosis-like Lesions is moderate,
with an AUC of 75.0%. The ROC curve
shows some overlap between true positives
and false positives, reflecting difficulties in
classification. This could be due to the
varied and complex nature of benign
keratosis-like lesions, which share features
with other classes. Improving the training
data representation for this class could
enhance the model’s performance.

Dermatofibroma (AUC: 77.0%): The ROC
curve for Dermatofibroma  indicates
moderate performance, with an AUC of
77.0%. The curve suggests challenges in
separating true positives from false positives,
likely due to limited training samples or less
distinctive visual features. Increasing the
dataset size and refining feature extraction
methods could help improve the model's
classification accuracy for Dermatofibroma.

Response: In this work, the ROC-AUC
(Receiver Operating Characteristic - Area
Under the Curve) was used as a key
evaluation metric instead of accuracy,

precision, recall, and Fl-score. The choice
of ROC-AUC was driven by its ability to
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provide a threshold-independent assessment
of the model's performance across all
decision thresholds, making it particularly
useful in medical diagnosis, where false
positives and false negatives have different
implications. Additionally, since skin lesion
classification is a multiclass problem, the
ROC curve was employed in a one-vs-all
approach to evaluate the model's ability to
differentiate each lesion type from the rest.

Computational Efficiency

Training Time: The training process in this
study was executed in a GPU-accelerated
environment utilizing an NVIDIA P100
GPU. As shown in the figure, the session
duration at the time of export was
approximately 53 minutes, which reflects
the computational time required to
preprocess the data, train the deep learning
model across 25 epochs, and evaluate its
performance. The relatively efficient
training time highlights the benefits of using
a pretrained architecture like MobileNetV2,
which leverages transfer learning to reduce
the time required for feature extraction and
optimization.

Resource Utilization: The computational
setup utilized minimal CPU resources
during training, with most of the processing
delegated to the GPU for parallel
computation. The GPU memory usage
indicates an efficient allocation, as only a
fraction of the available 16GB memory was
utilized,  demonstrating  the  model's
compatibility with hardware setups of
moderate capacity. The RAM usage was
around 342 MB, which is well within
acceptable limits for such tasks, showcasing
the model's ability to handle training without
exhausting system memory. These metrics
confirm the computational efficiency of the
model, making it suitable for deployment in
environments with constrained resources.
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DISCUSSION

The variation in AUC values across skin
lesion classes can be attributed to several
critical factors, including class distribution,
visual similarity between lesion types, and
feature representation quality. The model
achieved the highest AUC for Basal Cell
Carcinoma (92.6%) and Vascular Lesions
(92.1%), likely due to their distinct visual
patterns, which are easier for the DCNNs to
learn and classify. Conversely, lower AUC
values for Melanoma (73.2%) and Benign
Keratosis-like Lesions (75.0%) suggest
challenges in discriminating these classes,
potentially due to their heterogeneous
appearance and high inter-class similarity
with benign types like Nevi. This difficulty
is compounded by class imbalance in the

dataset, where underrepresented classes
receive less exposure during training,
limiting the model’s learning capacity.
Additionally, while transfer learning

enhances feature extraction, its effectiveness
may vary depending on how well the pre-
trained features align with dermoscopic
patterns. The moderate performance on
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