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ABSTRACT
This study aims to investigate the influence of magnetic particle concentration, Darcy number,
Brinkman number, and Hartmann number on the steady magnetohydrodynamics (MHD) of
two - phase flow of Jeffrey fluid with magnetic particles considering the effects of viscous
and magnetic dissipation. The flow occurs between two parallel porous plates. The upper
plate is stationary, while the lower plate slides due to the pressure and velocity gradients. The
governing equations were solved using method of perturbation. The impact of these variables
on the fluid’s temperature and velocity profiles are analyzed through graphical representation.
An increase in magnetic particle concentration at the lower pressure (0.01) decreases the fluid
velocity, whereas at higher pressures (5.0), the fluid velocity increases, with no effect on the
fluid temperature. Additionally, an increase in the Brinkman number, irrespective of the
pressure has no impact on the fluid velocity but leads to a rise in fluid temperature.
Keywords: Two-phase flow, magnetic dissipation, Jeffrey fluid, porous channel, magnetic
field.

INTRODUCTION

The numerous applications of non-Jeffrey
and Jeffrey fluids in industrial processes,
medicine and engineering have garnered
researchers’ attention over the past few
decades. Non-Jeffrey fluid behaviour is
typically exhibited by inorganic and organic
substances, salts solutions with low
molecular mass, and molten metals. In these
materials, shear stress is directly
proportional to shear rate. However, many
studies have shown that the non-Jeffrey
model is not consistently accurate. Materials
such as adhesives, polymeric melts,
dispersions, suspensions, emulsions and
slurries do not exhibit a linear relationship
between strain and stress.
Jeffrey fluid is a non-Newtonian
viscoelastic fluid characterized by its ability
to exhibit both elastic and viscous behaviour.
It is also an extension of the Maxwell fluid
model, incorporating both relaxation time
and retardation time, which allows it to
capture more complex flow behaviours.

These fluids are classified as non -
Newtonian or nonlinear with the following
features: viscoelastic behaviour, stress
relaxation, time-dependent rheology and
applicability to biological fluids. In both the
medical field and industry, this fluid has
widespread applications due to its
viscoelastic properties. Blood, mocus and
toothpaste are good examples of these fluids
due to their model. The impact of radiated
joule heating and heat flux on the electro-
osmotic flow of non-Newtonian fluid was
investigated by Nazeer et al. (2021). It was
concluded that the temperature and velocity
decrease with respect to the non-Newtonian,
electro kinetic and radiation parameters.
Hayat et al. (2016) studied the thermal
radiation effects on the mixed convection
stagnation point flow in a Jeffrey fluid and
found that an increase in Deborah number
elevated the fluid velocity. Dalir (2014)
conducted a numerical study on entropy
generation for forced convection flow and
heat transfer of a Jeffrey fluid over a
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stretching sheet and discovered that an
increase in Deborah number elevated the
entropy generation number, while the
entropy generation number decreased as the
ratio of relaxation to retardation time
increased. The simultaneous effects of
nanoparticles and slip on Jeffrey fluid flow
through a tapered artery with mild stenosis
were investigated by Rahman et al. (2016),
who found that the direct proportionality of
stress to the height increased the amplitude
of the stress, and an increase in the
Brinkman number (Br) decreased the fluid
velocity.
Magnetohydrodynamics (MHD) refers to
the movement of electric charges within
which magnetic forces act. The medical and
pharmaceutical fields, including wound
treatment using magnetic fields and
hyperthermia, are among the several
applications of magnetohydrodynamic flow
in fluids, as well as in compressors and
cancer treatment. Lot et al. (2024) studied
the effect of the magnetic field on two-
phase flow of Jeffrey and non-Jeffrey fluids
with partial slip and heat transfer in an
inclined medium. They concluded that an
increase in magnetic field values reduced
the fluid velocity and elevated the fluid
temperature in the Jeffrey fluid. Abbasi et al.
(2016) analyzed the MHD effects of Jeffrey
nanofluids and found that increasing the
Jeffrey fluid parameters enhances the fluid
temperature. Jamil et al. (2020) investigated
the MHD fractionalized Jeffrey fluid and
observed that both the shear stress and
velocity significantly decreased with
increasing values of the MHD parameter (M)
and the porosity parameter (k). Chu et al.
(2021) performed a scale analysis and
numerical study of non-Newtonian fluids
and discovered that the skin friction
coefficient decreased with higher values of
the Hartmann number, while the heat flow
increased with a higher Prandtl number.
Khan et al. (2016) examined the exact
solutions for MHD flow of couple stress
fluids with heat transfer and noted that when

0 and 0 oac the non-Newtonian
viscous fluids did not yield exponential
solutions under couple stress effects. A
comparative study by Hassan et al. (2019)
on nanofluids containing magnetic and non-
magnetic particles propagating over a wedge
revealed that the addition of nanoparticles
enhanced the base heat transfer rate,
especially when small-sized magnetic
nanoparticles were used.
A porous channel (or material) is a
structure containing pores (voids) filled with
fluid. Such channels are commonly used in
industries for applications including
filtration, distillations towers, ion exchange
columns, catalytic reactions, heat
exchangers and transpiration cooling.
Kahshan et al. (2019) investigated the heat
and mass transfer of Jeffrey fluid through a
porous- walled channel. The solution was
obtained using the Perturbation method.
Ramesh (2018) studied the effects of
viscous dissipation and joule heating on
Jeffrey fluid flow, considering slip
conditions for Couette flow, generalized
Couette flow, and Poiseuille flow.
Turkyilnazoglu and pop (2013) analyzed the
analytical solutions for mass and heat
transfer in Jeffrey fluid flow. They
evaluated the effects of various parameters
on temperature and velocity distributions.
A magnetic particle is a nano-, micro-, or
millimeter- sized particle dispersed in a
fluid that can be energized by an external
magnetic field. These particles are
commonly used in the design of smart
materials, micromachines, and various
applications in engineering and
biotechnology. Examples of these particles
include iron oxide, nickel, cobalt, steel,
stainless steel, gadolinium and dysprosium.
The amount of these particles in the fluid
determines its concentration. Hu et al. (2021)
studied the two phase flow of MHD Jeffrey
flows with the suspension of tiny metallic
particles and found that as the Hartman
number increases, the fluid temperature and
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velocity decrease. Additionally, heat
transfer and fluid flow increase as
concentration of metallic particle rises.
To the researchers’ knowledge, the
magnetohydrodynamics of Jeffrey fluid with
two- phase flow through a porous channel
containing viscous dissipation and magnetic
particles has not yet been examined.
Therefore, the innovation of the current
study is to examine the steady-state

magnetohydrodynamics of Jeffrey fluid with
two- phase flow, incorporating viscous
dissipation, magnetic particles, and
concentration effects. The aim of the current
study is to use the magnetic particle
concentration, Brinkman number, Darcy
number and Hartmann number to examine
the velocity and temperature of the Jeffrey
fluid. The effects of these parameters on the
fluid velocity and temperature profiles are
described using graphs.

In this study, we consider the steady
magnetohydrodynamic (MHD) flow of a
Jeffrey fluid with two - phase flow,
incorporating magnetic materials and
accounting for both viscous and magnetic
dissipation effects. The flow takes place
through a porous channel bounded by two
horizontal walls, with the plates located at a
spaced of hy  and hy  where (h) is
the plate distance. An external magnetic field
of strength BO is applied perpendicular to the
channel.

The fluid motion within the channel is driven
by the combined effects of the magnetic field
and a pressure gradient. The analysis includes
the influence of magnetic particle
concentration (Cr), Brinkman number (Br),
Hartmann number (Ha) and Darcy number
(Da). It is assumed that the particle and fluid
velocities are pu and fu , respectively, where
( pu ) denotes the particle velocity and ( fu )
denotes the fluid velocity.

Figure 1: Generalized Couette Flow
I
n Figure 1, consider a two-phase MHD
Jeffrey fluid flowing between two horizontal
plates embedded in a porous channel, with
both plates located at a distance y =  h. The
upper channel wall is stationary, while the
lower wall moves with constant pressure and
velocity. The T1 and T0 temperature is

sustained at upper and bottom channel
appropriately. The corresponding governing
equations for the magnetohydrodynamic
(MHD) two-phase Jeffrey fluid subjected to
an external magnetic field, following Nazeer
et al. (2021), are presented as follows

Equations of the fluid
According to Makheimer et al. (1998), the following are the momentum linear and continuity
equations;
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The definition of Jeffrey fluid stress tensor  is as follows;
..
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Where ( 1 ) is the Jeffrey parameter. The substantial derivative
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In the present case,
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Equation (4) and (5) substituting into equation (3), we have,
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Therefore, from the expression above we have,
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Hence, the definition of J the present vector;
BVEJ   (9)
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By substituting equation (8) and (10) into (2), the following momentum linear equation is given:
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Where (N) is the drag force coefficient, ( s ) the solid-liquid dimensional viscosity of the fluid
and (P) the pressure gradient. Therefore, the fluid continuity and momentum linear equations are
given as:
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Equations for particle phase
According to Nazeer et al. (2021), continuity and momentum linear equation of the present case
becomes;
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Simplifying the above we have:

0)( 



 fprr uuNC
x
pC (16)

Therefore, the particle continuity and momentum linear equations become:
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Energy equation
The existing problem energy equation can be given by
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With (  ) the Stefan Boltzmann constant, ( f ) the fluid density and ( pC ) specific heat. In
making the simplifications appropriately the dimensional equation of energy becomes;
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The conditions for the boundary
The boundary dimensional equivalent conditions for the boundary are:

hyatuuhyatu ff  0,0 (21)
hyatTThyatTT  10 , (22)

With (T) the dimensional fluid temperature (To) the upper plate temperature

METHOD OF SOLUTION
The method of perturbation was used in
solving the governing equations above: the
continuity equations (14) and (17), the
momentum equation (15) and (18), as well
the energy equation (19) and (20), with the
interface conditions and boundary condition

(21) and (22) for the velocity and temperature
distribution.
The continuity dimensionless equation and
dimensionless equation for momentum
These dimensionless types of equations are
derived using the following modifications for
converting the dimensional form of the
equations:
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With the equations (23) substitutes into (12) and (13), after the asterisks have been dropped for
simplicity, then, the continuity dimensionless equation phases for fluid and momentum equation
are as follow:
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By placing equation (23) into equation (17) and (18), after the asterisks have been dropped for
simplicity, the non-dimensional phase particle equations for continuity and momentum are as
follow:
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By substituting (27) into equation (25), the final type of the momentum dimensionless equation
become:
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Formalized Equation of Energy
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By substituting equation (29) above into (20), after the asterisks have been dropped for
simplicity, the dimensionless equation for energy become:
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Where,
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2
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
 , (k) the thermal conductivity and (T1) the lower plate temperature.

Formalized Boundary Conditions
After the asterisks have been dropped for simplicity, the dimensionless boundary conditions
with the assistance of equations (23) and (29) become:
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The solution of equation (30) using boundary condition (32), for the temperature of the fluid
becomes:
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The solution of equation (36) using boundary condition (31), for the velocity of the fluid
becomes:
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RESULTS AND DISCUSSION
The influence of the following variables;
magnetic particle concentration, Darcy
number, Hartmann number and Brinkman
number on the steady flow of MHD Jeffrey
fluid within the permeable medium are
analysed. These are presented in graph using
perturbation method to solve the governing
equations for generalized couette flow as
show below.
The Figure 2 and 3 shows that, the rise in the
values of magnetic particle
concentration(0.01  Cr  0.05) reduces the
velocity of the fluid at a lower pressure of
(0.01) and shows the opposite in Figure 3 at a
high pressure of (5.0). It is noticed that the
velocity profile reduces in Fig 2, based on the
movement of the lower plate which exert an
extra pull inside the fluid magnetic particles

concentration. The additional force impacts
around the magnetic particles elevate and
generate a barrier to the plane flow. However,
shows an increment in the flow of fluid at a
high pressure of (5.0).
Figure 4 and 5, the observation is that the
increment in the Darcy number values from
(0.01 Da  0.05) elevates the fluid motion at
both lower (0.01) and higher pressures (5.0).
Obviously, the fluid velocity elevates with the
existence of the porous medium and the
Lorentz force.
In Figure 6 and 7, the fluid velocity reduces
due to the Hartmann numbers of range
(0.01Ha0.05) in respective of the pressure
either low(0.01) or high (5.0). This reduction
is due to the negative forces generated by
elevating in the external magnetic field with
the rise in the values of Hartmann numbers.
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Finally, it was found in Figure 8 and 9, that
the elevation in Brinkman number values
(0.01  Br  0.05) causes a viscous
disintegration effect within the fluid.

Therefore, its sequel in elevating heat
origination, and hence, the temperature of the
fluid rises in both low (0.01) and high (5.0)
pressure.



DOI: 10.64290/bimagombe.v9i2A.1089

Bima Journal of Science and Technology, Vol. 9(2A) Jun, 2025 ISSN: 2536-6041

182

CONCLUSION
This study considered the
magnetohydrodynamics of Jeffrey fluid with
two-phase flow and the inclusion of
magnetic particle concentration under the
impact of viscous and magnetic dissipation.
The B-field and unvarying fluid possessions
are examined in this finding by the parallel
walls and Generalized Coutte flow of the
non- Newtonian fluid. The boundary value
problem solution with the performance of
magnetic particle concentration and other
variables on the Jeffrey fluid flow is
determined. The governing equations are
solved using Perturbation method and found

by Jeffrey stress tenor that is the energy
nonlinear momentum. The result of the
magnetic particle concentration, Brinkman
number, Hartmann number and Darcy
number to the fluid temperature and velocity
are presented graphically and analysed. The
performance of the pertinent variables on
the fluid flow has been discussed with the
aid of temperature and velocity profile. Due
to the graphical results, the following
permanent conclusions are made: The
magnetic particle concentration reduces the
flow of the fluid (velocity) at a lower
pressure and shows the opposite at a high
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pressure but has no effect on the fluid
temperature. The rise in the rates of Darcy
number elevates the fluid velocity at both
lower and higher pressures. This shows that
the existence of the porous media did not
affect the temperature distribution but
elevates the fluid velocity. The reduction in
fluid velocity at both lower and higher
pressures is cause by the Harmann number
but shows no effect on temperature profile.
This happen due to the resistant forces
(friction) generated by the elevation in the
horizontal magnetic field as Harmann
number is elevated. Hence, the presence of
an absorbent medium for Jeffrey fluid can
be analysed in the heat transfer impacts with
this study.
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