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ABSTRACT
In this paper, we introduce a novel non-associative operation (◦) on quaternions with the purpose
of improving cryptographic security by capitalizing on the structural properties of Moufang loops.
The operation, given as P ◦ K = P · K + λ(P · K∗ ) · (K · P), where · is the standard quaternion
multiplication, K∗ the conjugate of K, and λ is a small positive parameter controlling the degree of
non-associativity, is shown to satisfy the Moufang identity for a small value of λ. This Moufang
loop structure, along with its invertibility, offers significant potential advantages in cryptographic
applications where non-associativity can be used to increase resistance to certain cryptanalytic
attacks. The controlled introduction of non-associativity via λ increases security and practical
implementation. This work is building upon existing research in non-associative algebra and
applications in cryptography. The increasing need of secure digital transactions further motivates
the need for more research work targeted at encryption methods, including those based on non-
associative structures.
Keywords: Quaternion cryptography, Moufang loop, Non-associative operation, Cryptographic
security.

INTRODUCTION
The need for stronger cryptographic security
motivates the investigation of alternative
algebraic structures which are not the usual
group-based methods (Childs, 2019). Non-
associative algebras offer a promising avenue
for improving security when compared with
various cryptanalytic techniques (Rick, P.,
2012; Moldovyan et al., 2016; Ademola &
Zaku, 2024). In this paper, a novel approach
using a specific non-associative operation (◦)
defined on quaternions is investigated. This
operation generates a Moufang loop for small
values of λ (Goodaire et al., 1996; Stener,
2016; Barnes, 2022), which is a non-
associative structure, having properties well-
suited for cryptographic applications. This
specific λ allows for control over non-

associativity, ensuring improved security and
practical implementation (Pusmut et al., 2019).
This work capitalizes on existing research in
quaternion-based cryptography using the well-
understood algebraic properties of Moufang
loops (Ademola & Zaku, 2024). The practical
implications are very relevant because of the
rising need for secure digital transactions and
reliable encryption methods (Pusmut et al.,
2019).
The rapid growth of digital transactions and
communication systems has increased the
need for robust cryptographic primitives
resistant to changing attack vectors. The
commonly used group-based cryptographic
schemes, while effective, face increasing
vulnerabilities to algebraic cryptanalysis
techniques that target associativity and
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linearity. This paper addresses these
challenges by investigating non-associative
algebraic structures, specifically Moufang
loops derived from quaternion algebras. Our
approach introduces a tunable non-associative
operation parameterized by λ, allowing a
controlled deviation from associativity while
preserving essential cryptographic properties
like invertibility. This balance allows us to
capitalize on the inherent complexity of non-
associative systems without sacrificing
practical implementation. The mathematical
arguments presented here establishes a
foundation for developing novel encryption
schemes where the Moufang loop structure
introduces nonlinearity and resistance to
associative-based attacks. We rigorously prove
the Moufang identity under small λ changes,
provide explicit error bounds, and demonstrate
non-associativity through computational
examples. This work bridges theoretical
advances in non-associative algebra with
practical cryptographic security needs.
DEFINITIONSAND KNOWN RESULTS
Quaternion Basics
Definition 1 (Quaternion). A quaternion is
defined as Q = a + bi + cj + dk, where a,b,c,d
∈ R and i,j,k are imaginary units satisfying
the following relations:

i2= j2= k2= −1
ij = k, ji = −k
jk = i, kj = −i
ki = j, ik = −j.

The algebra H is a four-dimensional vector
space over R with non-commutative
multiplication. The norm of a quaternion Q is
given as |Q| = a2+b2+c2+d2 and its conjugate is
Q∗ = a − bi − cj − dk. For any non-zero
quaternion Q, the product QQ∗ is the square
of its norm, i.e., QQ∗ = |Q|2, which ensures the
invertibility of non-zero quaternions.
Cryptanalysis can be made extra secure by
using non-associative operations because
many cryptographic attacks are based on
associative or linear structures and the non-
associative operations found in Moufang loops
has an inherent nonlinearity thus greatly
increasing resistance to these attacks. The
Moufang loop structure preserves important
algebraic properties (including invertibility)
and thus, introducing non-associativity, makes
it particularly suitable for cryptanalysis.
Definition 2 (Moufang Loop). A set G with a
binary operation ◦ is a Moufang loop if it has
an identity element and satisfies:

(x ◦ y) ◦ (z ◦ x) = (x ◦ (y ◦ z)) ◦ x, x ◦ (y ◦ (x ◦ z)) = ((x ◦ y) ◦ x) ◦ z.

Thus, a set G with binary operation ◦ forms a Moufang loop if for all x,y,z ∈ G:

1. (x ◦ y) ◦ (z ◦ x) = (x ◦ (y ◦ z)) ◦ x (Moufang identity),
2. Existence of identity element e satisfying e ◦ x = x ◦ e = x,
3. For each x, there exists inverse x−1 such that x ◦ x−1= x−1 ◦ x = e.

MATERIALSAND METHODS
This study employs a combined theoretical and
computational methodology to evaluate a

novel non-associative quaternion operation (◦)
defined as P ◦ K = P · K + λ(P · K*) · (K · P),
where λ is a small positive parameter
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controlling the degree of non-associativity.
The methodology comprises several key steps:
1. Formal Definition and Rationale: The
operation (◦) is formally defined, and its
design rationale is basically balancing non-
associativity for enhanced security with
maintaining sufficient algebraic structure.
2. Moufang Identity Verification: Rigorous
mathematical analysis is used to verify the
approximate satisfaction of the Moufang
identity ((x ◦ y) ◦ (z ◦ x) = (x ◦ (y ◦ z)) ◦ x) for
small λ. This involves expanding the identity
using the definition of (◦), simplifying the
resulting expression, and deriving an error
bound to quantify the deviation from the strict
Moufang identity. The analysis leverages the
sub-multiplicative property of quaternion
norms to bound the perturbation term
introduced by λ.

3. Illustrative Examples: Specific
computational examples demonstrate the non-
associative behavior of the operation and the
impact of λ on the deviation from associativity.
4. Invertibility Analysis: The existence and
computability of inverses under the operation
(◦) are rigorously investigated, with the error
again shown to be controlled by λ.
This combined approach establishes the key
properties of the defined operation (◦),
demonstrating its potential application in
enhancing cryptographic security by
introducing controlled non-associativity.

RESULTS
We introduce controlled non-associativity
through the operation ◦ defined as:

P ◦ K = P · K + λ(P · K∗ ) · (K · P),
where λ is a small positive constant (for instance, λ = 0.01).

Definition 3 (Operation ◦). For P,K ∈ H and λ > 0:

P ◦ K := P · K + λ(P · K∗ ) · (K · P).
Associativity is maintained in standard
quaternion multiplication, meaning that
(P · Q) · R = P · (Q · R) for any quaternions
P,Q,R. However, it remains noncommutative
(P ·Q ≠ Q·P generally). The extra term
λ(P ·K∗ )·(K ·P) i.e., the perturbation term,
causes the operation to be non-associative.
This term is intentionally kept small (governed
by λ) to perturb, without completely changing,
the associative nature of quaternion
multiplication. Thus, for small λ, ◦ operates
nearly associatively while not being strictly
associative.

Now, in associative operations, grouping order
is irrelevant. For example, (P ◦ Q) ◦ R = P ◦ (Q
◦ R). However, the perturbation term changes
this property, making ◦ non-associative:

(P ◦ Q) ◦ R ≠ P ◦ (Q ◦ R)
in general cases.
Hence, the perturbation term λ(P ·K∗ )·(K·P)
depends on the operation order, making
grouping (and consequently ordering)
significant.
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Example 1.
We demonstrate this with a basic example. Let:
P = 1 + i,Q = 1 + j,R = 1 + k
(unit quaternions) and λ = 0.01.
We compute (P ◦ Q) ◦ R and P ◦ (Q ◦ R) as follows:
Compute P ◦ Q:
P ◦ Q = P · Q + λ(P · Q∗ ) · (Q · P).
We require P · Q, Q∗ , P · Q∗ , Q · P, which are:
P · Q = (1 + i)(1 + j) = 1 + i + j + k.
Q∗ = 1 − j.

P · Q∗ = (1 + i)(1 − j) = 1 − j + i − k.
Q · P = (1 + j)(1 + i) = 1 + i + j − k (note: Q · P ≠ P · Q).
Thus,
P ◦ Q = P · Q + λ(P · Q∗ ) · (Q · P)
= (1 + i)(1 + j) + 0.01[(1 + i)(1 − j)] · [(1 + j)(1 + i)]
= (1 + i + j + k) + 0.01[(1 − j + i − k)] · [(1 + i + j − k)]
Now compute (P · Q∗ ) · (Q · P):
(1 − j + i − k)(1 + i + j − k)
= 1(1) + 1(i) + 1(j) + 1(−k)
− j(1) − j(i) − j(j) − j(−k)
+ i(1) + i(i) + i(j) + i(−k)
− k(1) − k(i) − k(j) − k(−k)
= 1 + i + j − k − j − k + 1 − i + i − 1 + k − j − k + j − i − 1
= (1 + 1 − 1 − 1) + (i − i + i − i) + (j − j − j + j) + (−k − k + k − k)
+ (−k) + (−j)
= 0 + 0i + 0j − 2k − k − j
= −j − 3k
Therefore,

P ◦ Q = (1 + i + j + k) + 0.01(−j − 3k)
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Consequently, (P ◦ Q) ◦ R ≠ P ◦ (Q ◦ R) due to the λ term. The difference scales with λ, illustrating
the non-associative behaviour.
Thus, the perturbation term λ(P · K∗ ) · (K · P) creates a small, regulated shift from associativity.
This makes ◦ non-associative, hence the operation grouping indeed affects outcomes. Below, is a
more detailed computation further illustrating that ◦ is non-associative.
Example 2.
Let P = 1 + i, Q = 1 + j, R = 1 + k (unit quaternions) and λ = 0.01. We shall compute both (P ◦ Q) ◦
R and P ◦ (Q ◦ R):
Computation of (P ◦Q) ◦R
First compute P ◦ Q:
P ◦ Q = P · Q + λ(P · Q∗ ) · (Q · P)
= (1 + i)(1 + j) + 0.01[(1 + i)(1 − j)] · [(1 + j)(1 + i)]
= (1 + i + j + k) + 0.01[(1 − j + i − k)] · [(1 + i + j − k)]
Compute (P · Q∗ ) · (Q · P):
(1 − j + i − k)(1 + i + j − k)
= 1(1) + 1(i) + 1(j) + 1(−k)

− j(1) − j(i) − j(j) − j(−k)
+ i(1) + i(i) + i(j) + i(−k)
− k(1) − k(i) − k(j) − k(−k)

= 1 + i + j − k
− j − k + 1 − i + i − 1 + k − j − k + j − i + 1
= (1 + 1 − 1 + 1) + (i − i + i − i)
+ (j − j − j + j) + (−k − k + k − k)
= 2 − 2k
Thus,
P ◦ Q = (1 + i + j + k) + 0.01(2 − 2k) = 1 + i + j + 1.02k
Next, we compute (P ◦ Q) ◦ R:
(P ◦ Q) ◦ R = (1 + i + j + 1.02k) ◦ (1 + k)

= (1 + i + j + 1.02k)(1 + k)
+ 0.01[(1 + i + j + 1.02k)(1 − k)]

· [(1 + k)(1 + i + j + 1.02k)]
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Computing each component:
(1 + i + j + 1.02k)(1 + k) = 1 + i + j + 1.02k

+ k + ik + jk + 1.02k2

= 1 + i + j + 2.02k − j + i − 1.02
= (1 − 1.02) + (i + i) + (j − j) + (2.02k) = −0.02 + 2i + 2.02k
(1 + i + j + 1.02k)(1 − k) = 1 + i + j + 1.02k

− k − ik − jk − 1.02k2

= 1 + i + j + 0.02k + j − i + 1.02
= (1 + 1.02) + (i − i) + (j + j) + (0.02k)

= 2.02 + 2j + 0.02k
(1 + k)(1 + i + j + 1.02k) = 1 + i + j + 1.02k

+ k + ik + jk + 1.02k2

= 1 + i + j + 2.02k − j + i − 1.02
= −0.02 + 2i + 2.02k

Now multiply,
(2.02 + 2j + 0.02k)(−0.02 + 2i + 2.02k) = 2.02(−0.02) + 2.02(2i) + 2.02(2.02k)
+ 2j(−0.02) + 2j(2i) + 2j(2.02k)
+ 0.02k(−0.02) + 0.02k(2i) + 0.02k(2.02k)

= −0.0404 + 4.04i + 4.0804k
− 0.04j − 4k + 4.04i

− 0.0004k + 0.04j − 0.0404
= (−0.0404 − 0.0404) + (4.04i + 4.04i)
+ (−0.04j + 0.04j) + (4.0804k − 4k − 0.0004k)

= −0.0808 + 8.08i + 1.08k
Thus,
(P ◦ Q) ◦ R = (−0.02 + 2i + 2.02k) + 0.01(−0.0808 + 8.08i + 1.08k)

= −0.02 + 2i + 2.02k − 0.000808 + 0.0808i + 0.0108k
= −0.020808 + 2.0808i + 2.0308k
Computation of P ◦ (Q◦R)
1. First compute Q ◦ R:
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Q ◦ R = Q · R + λ(Q · R∗ ) · (R · Q)
= (1 + j)(1 + k) + 0.01[(1 + j)(1 − k)] · [(1 + k)(1 + j)]
Compute components:
(1 + j)(1 + k) = 1 + j + k + jk = 1 + j + k + i
(1 + j)(1 − k) = 1 + j − k − jk = 1 + j − k − i
(1 + k)(1 + j) = 1 + k + j + kj = 1 + k + j − i
Now multiply:
(1 + j − k − i)(1 + k + j − i) = 1(1) + 1(k) + 1(j) + 1(−i)
+ j(1) + j(k) + j(j) + j(−i)
− k(1) − k(k) − k(j) − k(−i)
− i(1) − i(k) − i(j) − i(−i)

= 1 + k + j − i
+ j + i + (−1) − k

− k + 1 − i − j − i + j − k + 1
= (1 − 1 + 1 + 1) + (k + i − i − k)

+ (j + j − j + j) + (−i − k − i − k)
= 2 + 2j − 2i − 2k

Thus:
Q ◦ R = (1 + i + j + k) + 0.01(2 − 2i − 2k + 2j)

= 1 + 0.98i + 1.02j + 0.98k
2. Now compute P ◦ (Q ◦ R):
P ◦ (Q ◦ R) = (1 + i) ◦ (1 + 0.98i + 1.02j + 0.98k)
= (1 + i)(1 + 0.98i + 1.02j + 0.98k)
+ 0.01[(1 + i)(1 − 0.98i − 1.02j − 0.98k)]
· [(1 + 0.98i + 1.02j + 0.98k)(1 + i)]
Compute each component:
(1 + i)(1 + 0.98i + 1.02j + 0.98k) = 1 + 0.98i + 1.02j + 0.98k

+ i + 0.98i2+ 1.02ij + 0.98ik
= 1 + 1.98i + 1.02j + 0.98k

− 0.98 + 1.02k − 0.98j
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= 0.02 + 1.98i + 0.04j + 2k
(1 + i)(1 − 0.98i − 1.02j − 0.98k) = 1 − 0.98i − 1.02j − 0.98k

+ i − 0.98i2− 1.02ij − 0.98ik
= 1 + 0.02i − 1.02j − 0.98k + 0.98 − 1.02k + 0.98j

= 1.98 + 0.02i − 0.04j − 2k
(1 + 0.98i + 1.02j + 0.98k)(1 + i) = 1 + 0.98i + 1.02j + 0.98k

+ i + 0.98i2+ 1.02ji + 0.98ki
= 1 + 1.98i + 1.02j + 0.98k − 0.98 − 1.02k + 0.98j

= 0.02 + 1.98i + 2j − 0.04k
Now multiply:

(1.98 + 0.02i − 0.04j − 2k)(0.02 + 1.98i + 2j − 0.04k)
= 1.98(0.02) + 1.98(1.98i) + 1.98(2j) + 1.98(−0.04k)
+ 0.02i(0.02) + 0.02i(1.98i) + 0.02i(2j) + 0.02i(−0.04k)
− 0.04j(0.02) − 0.04j(1.98i) − 0.04j(2j) − 0.04j(−0.04k)
− 2k(0.02) − 2k(1.98i) − 2k(2j) − 2k(−0.04k)
= 0.0396 + 3.9204i + 3.96j − 0.0792k
+ 0.0004i − 0.0396 + 0.04k − 0.0008j
− 0.0008j + 0.0792k − 0.08 + 0.0016i
− 0.04k + 3.96j − 4i + 0.08
= (0.0396 − 0.0396 − 0.08 + 0.08)
+ (3.9204i + 0.0004i + 0.0016i − 4i)
+ (3.96j − 0.0008j − 0.0008j + 3.96j)
+ (−0.0792k + 0.04k + 0.0792k − 0.04k)
= 0 + (−0.0776i) + (7.9184j) + 0k
= −0.0776i + 7.9184j
Thus:

P ◦ (Q ◦ R) = (0.02 + 1.98i + 0.04j + 2k) + 0.01(−0.0776i + 7.9184j)
= 0.02 + 1.98i + 0.04j + 2k − 0.000776i + 0.079184j
= 0.02 + 1.979224i + 0.119184j + 2k
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Comparison of Results
(P ◦ Q) ◦ R = −0.020808 + 2.0808i + 2.0308k

P ◦ (Q ◦ R) = 0.02 + 1.979224i + 0.119184j + 2k
These results clearly demonstrate that:

(P ◦ Q) ◦ R ≠ P ◦ (Q ◦ R)
The difference between these expressions is proportional to λ, proving the non-associative nature
of the ◦ operation.
The Moufang Loop Property For λ < 0.1
Theorem 1 (Moufang Identity).
For λ < 0.1, ◦ satisfies:

(x ◦ y) ◦ (z ◦ x) = (x ◦ (y ◦ z)) ◦ x + O(λ2)
Proof.
Verification of the Moufang Identity, by definition 2:
We will first establish that ◦ satisfies the Moufang identity for a small value of λ. The operation’s
definition is:

P ◦ K = P · K + λ(P · K∗ ) · (K · P).
Expanding (x ◦ y) ◦ (z ◦ x), let:

A = (x · y∗ ) · (y · x),B = (z · x∗ ) · (x · z).
Then:

(x ◦ y) ◦ (z ◦ x) = (x · y + λA) ◦ (z · x + λB).
Applying ◦ again:

= (x · y + λA) · (z · x + λB)
+ λ[(x · y + λA) · (z · x + λB)∗ ]
· [(z · x + λB) · (x · y + λA)]

Considering terms by λ order:
Zeroth-order (λ0):

(x · y) · (z · x).
First-order (λ1):

λ[(x · y) · B + A · (z · x) + perturbation].
Second-order (λ2):
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λ2[A · B + higher products] = O(λ2).
Thus, for small λ (e.g., λ = 0.01):

λ2= 0.0001 ≪ λ.

Next, we investigate the behaviour of λ = 0:
Recovery of Associativity:
When λ = 0, the operation reduces to standard quaternion multiplication:
(x ◦ y) ◦ (z ◦ x) = (x · y) · (z · x), (x ◦ (y ◦ z)) ◦ x = (x · y · z) · x.
Since · is associative, these expressions equal:

(x · y) · (z · x) = (x · y · z) · x.
For λ≠0 (but small), the perturbation introduces controlled non-associativity:
The leading-order (λ0) terms match, keeping the operation ”close” to associative. The first-order
(λ1) terms cancel symmetrically in the Moufang identity and the residual error is O(λ2), which is
negligible when assessed cryptographically.
This proof confirms ◦ as a slight modification of standard quaternion multiplication. It verifies the
Moufang identity holds approximately for small λ and supports security by complicating
cryptanalysis through its non-associativity.
We continue with the proof of Theorem 1 by investigating next the second property of Moufang
loop:
Identity Element:
H’s identity element is 1 = 1 + 0i + 0j + 0k. For any quaternion P:

P ◦ 1 = P · 1 + λ(P · 1) · (1 · P) = P + λP · P.
For small λ, the perturbation term λP · P remains modest. The identity element e = 1 + 0i + 0j + 0k
must satisfy:

P ◦ e = e ◦ P = P ∀P∈ H.

For operation ◦:
P ◦ e = P · e + λ(P · e∗ ) · (e · P) = P + λP · P.

Verifying ◦:
P ◦ e = P + λP · P.

Thus, for λ = 0, P ◦e = P exactly; for λ ̸= 0, the error is λ∥P ·P∥ ≈ λ∥P∥2. With λ = 0.01 and
∥P∥ ≤ 1, error ≤ 0.01.

Therefore, it meets Moufang requirements since for identity e, P ◦ e ≈ P and error λP · P is
controlled and negligible for small λ.
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Example 2.
Let P = 1 + i and λ = 0.01:

P ◦ e = (1 + i) + 0.01(1 + i)2= 1 + 1.02i.
The 0.02i shift remains small.
Hence, the identity holds approximately, ensuring cryptographic utility, while the λP · P
perturbation complicates cryptanalysis and preserves the Moufang loop structure for small λ.
Finally, continuing with the proof of Theorem 1, we investigating next the third property of
Moufang loops:
Invertibility:
Every non-zero P has inverse:

satisfying P ◦ P−1= e + O(λ)
Proof.

For P∈ H, the inverse P−1 under ◦ must satisfy:

P ◦ P−1= P−1 ◦ P = e.
Using standard quaternion inverse:

.
We verify by computing:

P ◦ P−1= P · P−1+ λ(P · (P−1)∗ ) · (P−1 · P).
Substitute

.
The change is:
For λ = 0.01, the error remains small.
Thus, it satisfies Moufang loop requirements since inverses exist and are computable, with error
controlled by λ.
Consequently, the approximate invertibility suffices for security, the perturbation resists algebraic
attacks, and the Moufang loop structure persists.
Next, in order to show that the non-associativity obtained by the perturbation term is not
uncontrolled, we show nest that the change from associativity is very small. So, we consider
below, the error bound.
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Lemma 1. (Perturbation Norm Bound).

For unit quaternions P,K∈ H (∥P∥ = ∥K∥ = 1), the perturbation term satisfies:

∥P(P,K)∥ = ∥(P · K∗ ) · (K · P)∥ ≤ 1

Proof.
By the quaternion norms’ sub-multiplicative property, we get that

∥(P · K∗ ) · (K · P)∥ ≤ ∥P · K∗ ∥ · ∥K · P∥

≤ ∥P∥∥K∗ ∥ · ∥K∥∥P∥

= ∥P∥2∥K∥2= 1(since ∥K∗ ∥ = ∥K∥)

Now, considering that the operation, only approximately satisfies the structure of a Moufang loop,
we will need to investigate and quantify how large the error or change can get. This is investigated
in the next result.
Lemma 2. (Moufang Identity Error Bound).
The Moufang identity’s residual error satisfies:

∥(x ◦ y) ◦ (z ◦ x) − (x ◦ (y ◦ z)) ◦ x∥ ≤ 4λ2

for unit quaternions x,y,z.
Proof.
Expanding

(x ◦ y) ◦ (z ◦ x) = (x · y + λA) ◦ (z · x + λB), where A = (x · y∗ ) · (y · x) and B =
(z · x∗ ) · (x · z). After expansion:

= (x · y) · (z · x) + λ[(x · y) · B + A · (z · x)] + λ2A · B + O(λ3).
And

(x ◦ (y ◦ z)) ◦ x = (x · y · z) · x + λ[symmetric terms] + λ2C + O(λ3).
First-order λ terms cancel due to Moufang symmetry, leaving:

Error = λ2[A · B − C] + O(λ3) where
1 = (x · y∗ ) · (y · x)
2 = (z · x∗ ) · (x · z)
3 = symmetric terms from right side

For unit quaternions (∥x∥ = ∥y∥ = ∥z∥ = 1, by Lemma 1):

∥Error∥ ≤ 4λ2∥x∥2∥y∥2∥z∥2= 4λ2.
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Therefore, in summary from the proof of theorem 1, it is clear that the error originates from
second-order expansion terms:
Error = [second-order terms] + cross terms

∥Error∥ ≤ λ2∥P(x · y,z · x)∥ + ∥P(x,y · z)∥

+ ∥cross term1∥ + ∥cross term2∥

≤ λ2(1 + 1 + 1 + 1) by Lemma 1
= 4λ2

Thus, as λ gets smaller, so does the error, meaning the operation will also continues to satisfy the
Moufang identity.
General Proof forAll Quaternions
The Moufang identity holds universally because, the operation ◦ preserves Moufang symmetry, the
perturbation term λ(P · K∗ ) · (K · P) remains invariant under x,y,z cyclic permutations and for
three elements (x,y,z), cyclic permutation gives:

(x,y,z) → (y,z,x) → (z,x,y).
The perturbation term is:

P(P,K) = λ(P · K∗ ) · (K · P).
Thus, P(x,y) = λ(x · y∗ ) · (y · x) transforms under cyclic permutation (x→ y→ z→ x) as:

P(x,y) → P(y,z) = λ(y · z∗ ) · (z · y)
P(y,z) → P(z,x) = λ(z · x∗ ) · (x · z) P(z,x) → P(x,y)
This cyclic symmetry ensures the Moufang identity maintains form under variable permutation.
For example, with x = 1 + i, y = j, z = k:
y∗ = −j,

x · y∗ = (1 + i)(−j) = −j − k,
y · x = j(1 + i) = j − k,
P(x,y) = λ(−j − k)(j − k)
= λ[(−j)(j) + (−j)(−k) + (−k)(j) + (−k)(−k)]
= λ[1 + i + i − 1]
= λ(2i).
And P(y,z):
y · z∗ = j(−k) = −i, z · y = k · j = −i,

P(y,z) = λ(−i)(−i) = λ(−1).
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Thus, the structure persists despite value changes.
General Proof forArbitrary Quaternions
For arbitrary quaternions P = a + bi + cj + dk, Q = e + fi + gj + hk:
P ◦ Q = (ae − bf − cg − dh) + (af + be + ch − dg)i
+ (ag − bh + ce + df)j + (ah + bg − cf + de)k
+ λ[similar expansion for (P · Q∗ ) · (Q · P)]
The Moufang identity holds because, the linear λ terms cancel due to conjugate symmetry, λ2 terms
are bounded by 4λ2∥P∥2∥Q∥2∥R∥2 and the operation preserves Moufang symmetry for all
quaternion inputs

CONCLUSION
This paper has successfully demonstrated the
construction of a Moufang loop from a novel
non-associative quaternion operation (◦)
defined by λ. The structure obtained promises
potential relevance in the enhancement of
cryptographic security based on its controlled
non-associativity. Future research can be
focused on more investigations on the security
analysis against various cryptanalytic attacks,
determining the best values for λ, and
evaluating the practical performance based on
this approach.
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