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ABSTRACT
Diabetes mellitus (DM) represents a significant global health issue marked by persistent high
blood sugar levels, driving the need for innovative treatment options. This research centers on the
creation and assessment of pyrazole derivatives as potential agents to lower blood sugar,
employing a robust machine learning-based QSAR model designed to predict the inhibitory
activity of compounds, utilizing RDKit for molecular descriptor calculation. A range of pyrazole
derivatives sourced from the ChEMBL database were analyzed, and their inhibitory activities to
reduce blood sugar levels were tested. QSAR models were constructed using Multiple linear
regression (MLR) and Random Forest regression for model development, integrating molecular
descriptors to identify relationships between structural characteristics and biological effectiveness.
These models exhibited strong predictive capabilities, pinpointing critical structural features that
enhance hypoglycemic activity, achieving an R2 of 0.82, cross-validated correlation coefficient Q²
of 0.80, and RMSE of 0.25 for Multiple Linear Regression and R² of 0.90, Q² of 0.85 and RMSE
of 0.20 for Random Forest model. This study identified several pyrazole derivatives with
promising blood sugar-lowering properties, offering a pathway for the development of new
diabetes treatments. The results highlight the value of QSAR in guiding drug discovery and lay
the groundwork for future preclinical and clinical studies.
Keywords: QSAR, HDAC6, Diabetes mellitus, RDKit, Multiple Linear Regression, Random
Forest, ChEMBL, Machine Learning, Drug Discovery

INTRODUCTION
Diabetes mellitus (DM) is a chronic metabolic
condition marked by prolonged high blood
sugar level (Liu et al., 2020), stemming from
either insufficient insulin production, reduced
insulin sensitivity or a combination of both
(Sukurai et al., 2017). As a global prevalence
continues to escalate, there is a pressing
demand for innovative and effective blood
sugar-lowering agent to better manage and
treat these diseases. Among the various
compounds under investigation pyrazole
derivatives have gained attention due to their
broad pharmacological potential (Janwal &

Bhardwaj, 2013), including anti-diabetic
effects (Datar & Jadhav, 2014). However,
designing these compounds effectively
requires a thorough understanding of how their
molecular structures influence biological
activity and how they interact with proteins
involved in glucose regulation (Schuffenhauer
et al.,2006).
Quantitative Structure-Activity Relationship
(QSAR) modeling has become a critical tool
in modern drug discovery, allowing
researchers to predict the biological
effectiveness of compounds based on their
molecular characteristics (Patel et al., 2014).
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This method helps identify structural elements
that enhance therapeutic performance, guiding
the development of new drug candidates (Du
et al., 2008). In this research, QSAR modeling
was conducted using Google Colab, a cloud-
based platform (RDKit) that offers a versatile
and user-friendly environment for
computational studies (Carneiro et al., 2018;
Ryzhkov et al., 2024). By applying machine
learning techniques and statistical approaches,
such as multiple linear regression (MLR) and
Random Forest Regression, reliable QSAR
models were created to establish connections
between the structural properties of pyrazole
derivatives and their ability to lower blood
sugar levels (Kovdienko et al., 2010).
This study focuses on leveraging QSAR
modeling to design and assess new pyrazole
derivatives as potential agents for reducing
blood sugar levels. By employing Google
Colab for QSAR analysis, the research aims to
identify promising compounds for further
development as diabetes treatments. The
outcomes of this work are expected to advance
the field of rational drug design and provide a

solid basis for creating effective anti-diabetic
therapies.

MATERIALS AND METHODS
Data Collection and Processing
The data collection process for this study was
meticulously designed to gather both
experimental and computational data, ensuring
a robust foundation for the QSAR modeling.
Hypoglycemic activity data for 52 pyrazole
derivatives were obtained from the ChemBL
database. ChemBL database served as a
reliable source of bioactive compounds. The
two-dimensional (2D) molecular structures of
these derivatives were constructed using
ChemDraw software, following the ACS
Document 1996 guidelines to maintain
compliance with established scientific and
industry standards (Hassan et al., 2022). Raw
data often contains inconsistencies or missing
values, necessitating preprocessing, this is
achieved by first converting IC50 to pIC50
followed by removing invalid molecules
(Tropsha, 2010). The compiled data, including
structural and activity information, is
presented in Table 1.

Table 1: The compiled structural and activity information.
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Molecular Descriptor Calculation
After signing in to Google Colab and creating
a new notebook, all the necessary libraries
were installed, additional ones were imported,
and the dataset was loaded (Vallejo et al.,
2022). Various types of molecular descriptors

for molecules are calculated by installing and
importing all the necessary libraries of RDKit
in Google colab using the command in the
Table 2 below. Molecular descriptors quantify
structural and physicochemical properties,
RDKit provides 200+ descriptors (Kumar,
2024).

Table 2: Libraries import and installation command.
Python

!pip install rdkit-pypi pandas numpy scikit- learn matplotlib seaborn
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These tools generated a wide range of
descriptors, including topological, geometric,
electronic, and physicochemical properties
(Yao et al., 2022). Redundant or irrelevant
descriptors were removed, and a subset of
descriptors was selected based on their
relevance to the biological activity and their
contribution to the QSAR model (Vallejo et al.,
2022; Chew et al., 2024).
Correlation analysis was used to eliminate
highly correlated or low-variance descriptors
and techniques like Random Forest was
employed to identify the most relevant
descriptors for predicting biological activity
(Chalkha et al., 2022). These descriptors are
used for training machine learning models.
Training the QSAR Model
Training a QSAR (Quantitative Structure-
Activity Relationship) model involves several
steps, from data preprocessing to model
evaluation. This methodology outlines the
process of training a QSAR model using
RDKit for molecular descriptor calculation
and Google Colab for model development and
validation (Balatti et al., 2022). The dataset
was loaded into a pandas, DataFrame, and
molecular descriptors were calculated using
RDKit. The dataset was then split into training
(80%) and test (20%) sets. Multiple linear
regression (MLR) was used to develop the
QSAR model (Kumar, 2024), and its
performance was evaluated using statistical
parameters (Balatti et al., 2022) such as the
correlation coefficient (R²), cross-validated
correlation coefficient (Q²), and root mean
square error (RMSE).
All the necessary packages of Python were
imported such packages includes: Scikit-leran,
Pandas, Scipy, Numpy, Seaborn, and
Matplotlib. These packages are necessary for
data visualization and analysis (Sengupta et
al.,2024). The molecular descriptors and
biological activity in the comma-separated

values (.csv) file are imported with the help of
the Pandas module (Chew et al., 2024). Linear
regression and random forest regression are
used for machine learning analysis. The linear
regression model predicts the target variable
by analyzing the relationship between the
target variable and independent variables. The
random forest model uses multiple decision
trees to make a prediction (Sengupta et al.,
2024).
The results from individual trees are averaged
to provide output predictions from the whole
forest. The gradient boosting model also uses
multiple decision trees. Compared to random
forests, it builds relatively simple trees, which
are sequentially incorporated into the
ensemble (Chicco et al., 2021). Bagging
regression consists of two parts: bootstrapping
and aggregation. In bootstrapping, multiple
subsets are derived from the whole data set
using the replacement procedure. In
aggregation, all possible outcomes of the
prediction are combined. The cross_val_score
function of Scikit-leran is used for cross-
validation. The GirdSearchCV library in
Scikit-leran is used to tune hyperparameters
(Vishwakarma et al., 2021).
The use of Google Colab for QSAR modeling
offers several advantages, including ease of
use, computational power, and access to
various open-source libraries. This platform
allows researchers to conduct complex QSAR
studies without the need for extensive
computational infrastructure, making it an
attractive option for academic and non-profit
institutions.

RESULTS AND DISCUSSION
Model Performance
The developed Multiple Linear Regression
model predict the biological activity (pIC50) of
the pyrazole derivatives based on their
molecular descriptors. The model was trained
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on 80% of the dataset and validated on the
remaining 20%. The Multiple linear regression

model performance metrics is depicted in the
Table 3 below:

Table 3:Model performance metrics.
Performance Metrics Multiple Linear Regression Random Forest

Correlation Coefficient (R2) 0.85 0.90
Cross Validated Correlation Coefficient

(Q2)
0.80 0.85

Root Mean Square 0.25 0.20

The Multiple Linear Regression model
provided valuable insights into the structure-
activity relationship of pyrazole derivatives.
The model identified several key descriptors,
including molecular weight, hydrophobicity,
and electronic properties, that significantly
influence the hypoglycemic activity of these
compounds (De et al., 2022). The strong
correlation coefficient (R² = 0.85) and cross-
validated correlation coefficient (Q² = 0.80)
indicate that the model captures the
relationship between the molecular descriptors
and biological activity effectively. The RMSE
of 0.25 suggests that the model's predictions
are reasonably accurate (Keller & Evans,
2019).
The Random Forest model demonstrated
superior predictive performance compared to
the Linear Regression model (Kovdienko,
2010). The higher correlation coefficient (R² =
0.90) and cross-validated correlation
coefficient (Q² = 0.85) indicate that the
Random Forest model captures the complex
relationships between molecular descriptors
and biological activity more effectively

(Keller & Evans, 2019). The lower RMSE of
0.20 further supports the superior predictive
accuracy of the Random Forest model as
indicated in the Table 3.
Feature selection is a critical step in the
development of Quantitative Structure-
Activity Relationship (QSAR) models,
particularly when using machine learning
algorithms such as Linear Regression and
Random Forest (Pratim et al., 2009). The
primary goal of feature selection is to identify
and retain the most relevant molecular
descriptors that significantly influence the
biological activity of the compounds. This
process offers several key benefits that
enhance the overall performance and
applicability of QSAR models (Ćalasan et al.,
2020).
The comparison between the Linear
Regression in Figure 1 and Random Forest
models in Figure 2 highlights the strengths of
ensemble methods in capturing non-linear
relationships and interactions between
descriptors (Hamada et al., 2025).
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Figure 1: Multiple Linear Regression Feature Selection.
While the Linear Regression model provides a simpler and more interpretable model, the Random
Forest model offers better predictive performance, making it a more suitable choice for QSAR
analysis in this context.
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Figure 2: Random Forest Feature Selection.
The residual plot for both linear regression and Random Forest are represented in Figure 3&4
respectively (Veerasamy et al., 2011).

Figure 3:Multiple Linear Regression residual plot.
Residual plot is indispensable tools in QSAR modeling, providing critical insights into model
performance, assumptions, and potential issues (Cordeiro et al., 2012). In this study, residual plots
helped validate the assumptions of the Linear Regression model and highlighted the superior
performance of the Random Forest model in capturing the complex relationships between
molecular descriptors and biological activity (Roy, 2022).
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Figure 4: Random Forest residual plot.
The scatter plot of actual vs. predicted pIC50 values demonstrated a strong linear relationship,
indicating good predictive accuracy of the model while for the Random Forest, the model showed

Figure 5:Multiple Linear Regression scatter plot.
an even stronger linear relationship compared to the Linear Regression model, indicating superior
predictive performance (Muratov et al., 2020; Sengupta et al., 2024).



DOI: 10.64290/bima.v9i2B.1279

Bima Journal of Science and Technology, Vol. 9(2B) Jul, 2025 ISSN: 2536-6041

E-ISSN: 3115-4662

95

Figure 6: Random Forest scatter plot.
CONCLUSION

QSAR models using Linear Regression and
Random Forest algorithms were developed
and evaluated to predict the hypoglycemic
activity of pyrazole derivatives. The Random
Forest model demonstrated superior predictive
performance, with an R² of 0.90 and an RMSE
of 0.20, compared to the Linear Regression
model (R² = 0.85, RMSE = 0.25). Key
molecular descriptors influencing the
biological activity were identified, including
Molecular Weight, Zgreebindex, Wenerindex,
Balabanindex, RadiusOfGyration, and QED.
Residual plots and actual versus predicted
activity scatter plots confirmed the models'
good fit and predictive accuracy. These
findings provide valuable insights into the
structure-activity relationships of pyrazole
derivatives and can guide the design of novel
hypoglycemic agents. Future work should
focus on synthesizing and evaluating the most
promising compounds identified by the
models and refining the models using larger
and more diverse datasets. The study
highlights the utility of QSAR modeling in
drug discovery and the importance of feature
selection and model validation in developing
robust predictive models.
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