
DOI: 10.64290/bima.v9i2B.1287

Bima Journal of Science and Technology, Vol. 9(2B) Jul, 2025 ISSN: 2536-6041

E-ISSN: 3115-4662

135

Comparative Assessment of the Classical Half-Slope Ratio and the Normalized Difference
Ratio as a Robust Linearity Diagnostic Tools

Babangida Ibrahim Babura1*
1*Department of Applied Mathematics, Federal University of Technology, Babura, Kano Road,

Babura, Jigawa State, Nigeria
Corresponding Author: baburabi.math@futb.edu.ng

ABSTRACT
Robust quantitative diagnostics are crucial for assessing linearity in Exploratory Data Analysis
(EDA), especially when data contain outliers. This work defines and compares two such
diagnostics derived from median-based half-slopes calculated across partitioned bivariate data.
We examine the established Classical Half-Slope Ratio (CHR), calculated as the ratio of the right
to the left half-slope, which indicates linearity near unity but is unbounded. We contrast this with
a proposed Normalized Difference Ratio (NDR), formulated as the normalized difference
between the half-slopes. The NDR is inherently bounded within [-1, 1], precisely indicates
linearity at zero, and directly signals the direction of data curvature through its sign (+/-).
Illustrative examples confirm that NDR’s magnitude quantifies the degree of non-linearity, while
its sign offers clear guidance for data transformations. While both CHR and NDR are valuable
outlier-resistant tools complementing visual analysis, the NDR’s bounded, centered scale pro-
vides distinct advantages for comparative analysis, standardization, and potential algorithmic use.
Keywords: Linearity Diagnosis, Robust Statistics, Exploratory Data Analysis, Half-Slope Ratio,
Normalized Difference Ratio, Outliers.

INTRODUCTION
The assessment of linearity in the relationship
between variables is a fundamental
prerequisite and diagnostic step in numerous
statistical modeling and data analysis tasks
across diverse fields, from econometrics and
environmental science to engineering and
bioinformatics. Many classical statistical
procedures, most notably Ordinary Least
Squares (OLS) regression, rely heavily on the
assumption of a linear underlying relationship
between the response and predictor variables.
Deviations from linearity can lead to biased
estimates, incorrect inferences, and poor
model predictions. Therefore, effective tools
for diagnosing potential non-linearity are
essential components of the data analysis
toolkit.
Exploratory Data Analysis (EDA), as
pioneered by Tukey (1977), emphasizes visual

inspection and data-driven exploration prior to
formal modeling. Scatter plots are the primary
visual tool for assessing bivariate linearity,
often supplemented by examining residual
plots from initial model fits. While invaluable,
visual methods can be subjective and may fail
to detect subtle or complex non-linear patterns,
particularly in large or high-dimensional
datasets. Formal statistical tests for linearity
exist, such as F-tests comparing linear models
to polynomial alternatives, or the Ramsey
RESET test. However, these classical tests
often rely on stringent assumptions (e.g.,
normality and homoscedasticity of errors) and,
like OLS itself, can be highly sensitive to the
presence of outliers or data contamination.
In practice, datasets frequently contain
atypical observations (outliers) that do not
conform to the pattern exhibited by the
majority of the data. The need to handle such
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contamination without distorting the analysis
led to the development of robust statistics
(Ayinde et al., 2015) . Robust methods aim to
provide reliable results that are resistant to the
influence of a bounded fraction of outliers.
While robust regression techniques (e.g., M-
estimation, S-estimation, MM-estimation,
Least Trimmed Squares, Theil-Sen estimation)
can provide parameter estimates less affected
by outliers, diagnosing linearity within a
robust framework remains important (McKean,
2004) . Diagnostics based on residuals from
robust fits are possible but can sometimes be
complex to implement or interpret (Ayinde et
al., 2015) .
An intuitive approach, rooted in EDA
principles, involves partitioning the data based
on the predictor variable and comparing
robust estimates of the slope across different
segments (Walters et al., 2006) . Tukey’s
resistant line, for instance, partitions the data
into three groups and uses median summary
points to derive robust slope and intercept
estimates. The comparison of the slope in the
lower segment (bL ) versus the upper segment
(bR ) forms the basis for linearity assessment
(Khedidja & Moussa, 2022) . A direct
quantitative diagnostic arising from this is the
Classical Half-Slope Ratio (CHR), defined as
CHR= bR bL . A CHR value near 1 suggests
linearity, while deviations indicate specific
types of curvature ( 1 for upward, 1 for
downward) or non-monotonicity (0 ), directly
guiding potential data transformations (re-
expression). While robust and interpretable,
CHR suffers from limitations: its scale is
unbounded, making comparisons across
datasets difficult, it is asymmetric, and it can
be highly sensitive if the denominator slope
(bL) is close to zero.
This raises the question: can we formulate a
robust linearity diagnostic that retains the
intuitive appeal and robustness of comparing
median-based half-slopes, but offers a

standardized, bounded scale for easier
interpretation and comparison? Such a
diagnostic, ideally centered at zero for
linearity and providing clear directional
information, could be valuable for both
interactive EDA and integration into more
automated data analysis pipelines.
This paper introduces and evaluates a
candidate for such a diagnostic, termed the
Normalized Difference Ratio (NDR). Based
on the same robust half-slopes bL and bR , the
NDR is defined via a normalized difference,
specifically NDR= bR−bL bR + bL . We
hypothesize that this formulation provides a
robust measure bounded within −1,1 , where
NDR=0 indicates linearity, the sign of NDR
indicates the direction of curvature, and the
magnitude NDR reflects the degree of non-
linearity relative to the overall slope
magnitudes.
This work is presented to formalize definition
of NDR as a linearity diagnostic tool. Its
properties were presented and compare its
behavior theoretically and empirically to an
established CHR. The NDR was further
established using simulated data under various
conditions (including linearity, different types
of non-linearity, and potential contamination)
as well as illustrative real-world data
examples. The subsequent sections were
organized as follows: Section 2 details an
estimator and properties of CHR. Section 3
formally introduce the NDR and analyzes its
key properties. Section 4 outlines the
methodology for our comparative simulation
study. Section 5 presents and interprets the
simulation results. Section 6 discusses the
findings and their implications. Finally,
Section 7 concludes the paper.

MATERIALS AND METHODS
The Classical Half-Slope Ratio (CHR)
Tukey (1977) came up with the Classical
Half-Slope Ratio (CHR), which is a well-
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known diagnostic tool used in Exploratory
Data Analysis to check the linearity of the
relationship between two variables and
facilitate data adaption.
Determination of CHR Value
CHR value is obtainable based on the
following steps:

Data Partitioning: The data points xi,yi
were put in order by their x-values. Then, the
points were split into three groups (Left,
Middle, and Right) with about the same
number of points in each category.
Summary Points: Find the median x-value
and median y-value for each group. This gives
us three strong summary points: xL,yL for
the Left group, xM,yM for the Middle group,
and xR,yR for the Right group.

Half-Slopes Calculation: Then, two "half-
slopes" were determined:

o The Left Half-Slope (bL ) is the slope of the
line that goes from the Left summary point to
the Middle summary point given by:

bL=
yM−yL
xM−xL

o The Right Half-Slope (bR ) is the slope of the
line that goes from the Middle to the Right
summary points given by:

bR=
yR−yM
xR−xM

 Were xM≠xL and xR≠xM.

CHR Calculation: The CHR is then found by
dividing the right half-slope by the left half-
slope:

CHR=
bR
bL

 This definition requires. bL≠0
Interpretation
The CHR value is interpreted as follows:

 CHR≈1: Suggests that bL≈bR , means that the
slope is the same across the whole data range,
which is a strong sign of linearity.

 CHR>1 : Implies bR>bL (assuming bL>0 ).
The trend is steeper in the right of the median
than to the left. This indicates an upward-
bending curve (e.g., quadratic y=x2).

 CHR<1 (and CHR>0 ): Implies that bR<bL
(having that bL>0). The trend is not as steep
on the right side of the data as it is on the left.
This means that the curve bends down, (e.g.,
logarithmic trend y=logx or root y= x).

 CHR<0: Indicates the sign of bL is opposite to
that of bR . This means that the relationship in
the data range is not always the same, like a
peak or a valley.
The extend of deviation from 1 indicate the
strength of the non-linearity in the data while
the direction guides appropriate data
transformations to achieve linearity.
Properties

 Robustness: CHR is effectively resistant to
outliers in both y and x direction and within
each group since it uses medians to
determine summary points to estimate half-
slopes..

 Scale: Because CHR is a ratio, it doesn't have
any dimensions. But its scale has no limits
and might go anywhere from −∞ to +∞. This
can make comparisons across different
datasets difficult and can lead to extreme
values if bL is close to zero.

 Asymmetry: The definition bR bL is
asymmetric. If the alternative bL bR were
used, the interpretation relative to 1 would be
inverted.

 Sensitivity to bL≈0: The CHR can be highly
unstable or undefined if the left half-slope bL
is zero or very close to zero.
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The Normalized Difference Ratio (NDR)
The CHR is a helpful and strong diagnostic
tool, but its unbounded size might make it
hard to understand and compare different
datasets or models. To solve this problem, we
proposed the Normalized Difference Ratio
(NDR), a strong linearity test with a
standardized, limited scale that is centered at
zero and keeps the intuitive idea of comparing
strong half-slopes.
Definition

Let bL and bR be the robust left and right half-
slopes, respectively, calculated as defined in
Section 2, based on partitioning the data
sorted by the predictor variable x into three
groups and finding the slopes between the
median summary points of these groups. The
Normalized Difference Ratio (NDR) is
defined as:

NDR= bR−bL
bR + bL

(1)

In the specific case where both half-slopes are
zero, bL=bR=0 , the expression becomes
indeterminate (0 0). Since this corresponds to
a perfectly linear flat relationship identified by
the robust summary points, we define NDR=0
in this instance. For all other cases where at
least one slope is non-zero, the denominator
bR + bL is strictly positive, and the NDR is
well-defined by Equation 1.
Justification of the Formulation
We chose the NDR formulation because it has
a number of useful qualities for a linearity
diagnostic of dataset namely:

 Centering at Zero for Linearity: The
difference between the right and left half-
slopes, bR−bL , is the numerator in NDR
expression. This difference became zero if and
only if bL=bR , and thus the diagnostic will
naturally center at NDR=0 for perfect
linearity.

 Directional Information: The sign of the
numerator shows the direction of the curvature.
If bR−bL>0 (i.e., NDR>0) implies the slope
increases from left to right (upward curve),
while bR−bL<0 (i.e., NDR<0 ) implies the
slope decreases (downward curve).

 Normalization and Boundedness: bR + bL
in NDR formulation is a normalization factor
reflecting the sum of the absolute magnitudes
of the slopes scales the difference bR−bL. This
specific normalization was chosen because:
a. It is non-negative and became zero when

both slopes are zero.

b. It is symmetric with respect to bL and bR.

c. It guarantees the NDR is bounded within
−1,1 inherent from triangle inequality,
bR−bL ≤ bR + −bL = bR + bL .
Consequently dividing by the left hand
side of the expressed inequality gives

bR−bL
bR + bL

≤1.

That is NDR = bR−bL
bR + bL

≤1.

 Simplicity and Interpretability: The
operations in NDR formulation are basic
arithmetic operations with absolute values
applied directly to the half-slopes, maintaining
a relatively simple structure.
Properties and Interpretation
The NDR as formulated exhibits the following
properties relative to its proposed application
as a linearity diagnostic tool:

 Range: The NDR has bounded interval within
the closed interval −1,1 .

 Linearity Point: NDR=0 uniquely identifies
the case where the robust half-slopes are equal
( bL=bR ), corresponding to linearity as
captured by this method.
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 Sign Interpretation: The sign of NDR
provides information about the direction of
curvature relative to a linear trend:

o NDR>0 : Indicates bR>bL . This signals an
upward-bending curve. Suggesting data
transformations like decreasing powers/logs
for y or increasing powers for x etc.

o NDR<0 : Indicates bR<bL , a case of a
downward-bending curve. Guides towards
data transformations like increasing powers
for y or decreasing powers/logs for x.

 Magnitude Interpretation: The absolute
value on NDR ( NDR ), indicate the degree of
non-linearity on a normalized scale from 0
(linear) to 1 (maximal deviation). It represents
the magnitude of the difference between
slopes relative to the sum of their individual
magnitudes. Larger NDR values signify
stronger non-linearity.

 Boundary Cases ( NDR=±1 ): The NDR
value reaches its highest value of 1 under
conditions representing maximal non-linearity
within this framework. This occurs if
bR−bL = bR + bL , which implies either:

a. One of the slopes is zero (but not both). E.g.,
if bL=0,bR≠0 , then
NDR= bR bR =sign bR . This corresponds
to a data fit that is horizontal in one segment
and sloped in the other.

b. The slopes have opposite signs and equal
magnitude (bR=−bL≠0). E.g., if bR=c>0 and
bL=−c , then NDR= c− −c c+c . This
corresponds to a symmetric V-shape or
inverted V-shape non-monotonicity.

 Thus, NDR =1 flags serious deviation from
linearity.

 Robustness: The NDR demonstrate
robustness properties from the underlying
median-based half-slopes bL and bR . Medians
are known for their resistance to outliers,
having a high breakdown point within their

calculation group. While a formal derivation
is beyond this scope, the NDR is expected to
possess good qualitative robustness against
vertical outliers and moderate robustness
against leverage points affecting the median
calculations. Its influence function is expected
to be bounded due to the normalization and
the bounded influence of medians, contrasting
with the potentially unbounded influence
function associated with ratio-based measures
like CHR when the denominator slope
approaches zero. The breakdown point of the
overall procedure depends on the partitioning
strategy and the median calculation within
groups.

 Symmetry Property: The NDR is anti-
symmetric with respect to the order of the
slopes: NDR bR,bL =−NDR bL,bR . This
reflects its nature as a normalized difference.
These properties suggest that the NDR
provides a well-behaved, interpretable, and
robust diagnostic measure suitable for
assessing linearity on a standardized scale.
Simulation Study Design
To evaluate the performance and properties of
the NDR and compare it with the CHR, we
designed a Monte Carlo simulation study and
some analyses on real-world datasets.
The primary objectives of the simulation study
are:
 To assess the ability of NDR and CHR to

distinguish linear from various non-linear
relationships under ideal conditions
(normally distributed errors, no outliers).

 To evaluate the robustness of both
diagnostics to heavy-tailed error
distributions and various types of data
contamination (vertical outliers, leverage
points).
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 To compare the stability (bias and
variance) of NDR and CHR values under
these different conditions.

Data Generating Processes (DGPs)

We simulated bivariate data xi,yi , for
i=1,…,N, according to the following models:

 Linear (Null Model): Consider
yi=β0+β1xi+ϵi . for linearity in xi,yi . With
parameter set at β0=5,β1=2.

 Monotonic Non-linear Models:
o Quadratic (Upward Curve): Consider

yi=5+2xi+β2xi
2+ϵi . In this case β2 varied

(e.g., 0.05, 0.1, 0.2) to have some control at
the degree of non-linearity.

o Square Root (Downward Curve): Consider
yi=5+β3 xi+ϵi . With β3 varied (e.g., 5, 10,
15). xi generated strictly positive.

o Exponential (Upward Curve): Consider
yi=β4exp β5xi +ϵi . β4=5 , β5 varied (e.g.,
0.05, 0.1).

 Non-monotonic Models:

o V-Shape: yi=5+βv∨xi−c∨+ϵi . Center c
typically set to median of xi. βv varied (e.g., 1,
2, 3).

o Sine Wave: yi=5+βssin 2πxi
P

+ϵi. Amplitude
βs and period P varied relative to the range of
x.
The predictor variable xi was generated either
as a sequence 1,…,N or drawn from a
Uniform(0, 20) distribution. Sample sizes (N)
considered were N∈{21,51,101}.
Error Distributions and Contamination

For each DGP, the error term ϵi was generated
from one of the following distributions, scaled
to have a specific standard deviation σ (e.g.,
σ=1.5):

 Standard Normal: ϵi∼N 0,σ2 .

 Heavy-tailed: Student’s t-distribution with 3
degrees of freedom ( ϵi∼t3 ), scaled
appropriately.

 Contaminated Normal (for robustness):
ϵi∼ 1−δ N 0,σ2 +δN , with contamination
proportion δ∈{0.05,0.10} and variance
inflation k=3.
Additionally, specific outlier scenarios were
simulated on data generated with standard
normal errors:

 Vertical Outliers: A proportion δ (e.g., 10
 Leverage Points: A proportion δ of xi values

were replaced with outlying values (e.g.,
xmax+range), paired with either their original
yi (good leverage) or a shifted yi (bad
leverage).
2.3.3 Diagnostic Calculation and Evaluation
Metrics
For each generated dataset under each
scenario, the half-slopes bL,bR were calculated
using the 3-group median method detailed
earlier, followed by the calculation of CHR
and NDR. We performed M=2000 Monte
Carlo replications for each scenario (results
presented are based on M=500 for brevity).
Performance was evaluated based on:

 Distribution under Linearity (H0): The
empirical distribution (mean, variance,
quantiles) of CHR and NDR when the true
DGP is linear. We assessed the closeness of
the median CHR to 1 and the median NDR to
0, and their variability (e.g., Interquartile
Range - IQR).

 Distribution under Non-Linearity (H1): The
empirical distribution of CHR and NDR for
each non-linear DGP. We assessed how well
the distributions separate from the null
distribution (e.g., comparing medians and
IQRs). The proportion of NDR values having
the correct sign (positive for upward curves,
negative for downward) was calculated.
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 Robustness Evaluation: Comparison of the
bias (deviation of the median diagnostic value
from its expected value under no
contamination) and variance (e.g., IQR or
Median Absolute Deviation - MAD) of CHR
and NDR under different error distributions
and outlier contamination schemes relative to
the clean normal error case.
Real-World Data Application
A publicly available datasets known or
suspected to exhibit non-linearity or contain
outliers would be analyzed to illustrate the
practical application of CHR and in
comparison with NDR, Each dataset, scatter
plots, CHR, and NDR values would be
computed and interpreted. Specifically, we
deploy practical application and comparative
behavior of the CHR and NDR diagnostics, as
applied to several well-known real-world
datasets available in R programming packages
namely: the ‘cars‘ dataset , the
‘faithful‘ geyser data (Azzalini 1990, ), and
Anscombe’s quartet (Anscombe 1973).
Computational Implementation
All simulations and calculations were
performed using the R statistical programming
environment (Version 4.3.1). Specific R
packages used included ‘dplyr‘ for data
manipulation, ‘ggplot2‘ for plotting, and
‘stats‘ for median calculations.

RESULTS
Simulation Results
In this section, we presents the results of the
Monte Carlo simulation study designed to
evaluate the performance of the proposed
NDR measure and compare it with the CHR
estimator under various conditions based on
the methodology outlined in Subsection 2.3.

3.1.1 Performance under Different Model
Structures (No Contamination)
We first examine the ability of the diagnostics
to distinguish between linear and non-linear
models using data generated with standard
normal errors and no additional contamination.
Figure 1 displays the distribution of NDR
values. In this case. the NDR distributions for
the linear model are tightly centered around
zero across all sample sizes (N=21, 51, 101),
validating its hypothesized ability to correctly
identify linearity under ideal conditions. For
the monotonic non-linear models, the we can
observe NDR ability to captures both the
presence and direction of curvature. The
upward-bending quadratic model’ yields NDR
distributions been centered above zero
(median NDR ≈ 0.18), while the downward-
bending ‘a square root model’ yields
distributions clearly centered below zero
(median NDR ≈ -0.20). The magnitude of the
median NDR in these cases provides an
indication of the average degree of non-
linearity detected for these specific model
parameters. Notably, for the non-monotonic
V-shape model, the NDR distribution is
concentrated near the boundary value of +1.
This distinct result arises because the
symmetric V-shape leads to bR≈−bL ,
mapping cleanly to NDR ≈+1 according to its
definition, thereby clearly signaling a strong
structural deviation from linearity different
from the monotonic curves. The precision of
the NDR estimates, indicated by the
decreasing interquartile range (IQR) with
increasing N, enhances the visual separation
between the distributions for different model
types, particularly improving the distinction
between linear and mildly non-linear patterns
at larger sample sizes.

h
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Figure 1: Distribution of NDR values by true model type and sample size (N), under normal
errors with no contamination. The red dashed line indicates NDR = 0 (perfect linearity).

Figure 2 presents the corresponding
distributions for the CHR on a log10 scale
(where CHR=1 corresponds to 0). The CHR
performs similarly well for the linear
(centered at 1) and monotonic non-linear
models (quadratic > 1, square root < 1),
correctly identifying the direction relative to
linearity. However, the visualization for the
V-shape model illustrates a practical
limitation. Since the expected CHR is
negative (≈−1), it cannot be displayed on the

log scale necessary to view the range of the
other models adequately. The resulting
boxplot shows high variability and fails to
convey the specific non-monotonic structure
as clearly as the NDR’s mapping to +1. While
CHR’s precision for linear and monotonic
models also improves with N, its utility for
simultaneous visual comparison across all
tested model types is hampered by its
unbounded scale and the sign issue with non-
monotonic cases.

Figure 2: Distribution of CHR values (log10 scale) by true model type and sample size (N),
under normal errors with no contamination. The red dashed line indicates CHR = 1.
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Examining Figures 1 and 2, the NDR's main
benefit in these settings is its restricted [-1,1]
scale. This lets you see how it behaves in
linear, monotonic non-linear, and non-
monotonic circumstances at the same time,
without having to change the scale, which can
hide some results (such negative CHR values).

Robustness to Error Distribution
Robustness against non-normal errors is a key
desideratum. Figure 3 investigates this by
comparing the NDR distribution for the linear
model when errors follow a standard normal
versus a heavy-tailed t-distribution with 3
degrees of freedom (t3).

Figure 3: Distribution of NDR values for the linear model under Normal vs. t(3) error
distributions (no contamination), faceted by sample size (N). The red dashed line indicates NDR
= 0.
The results in Figure 3 are compelling. The
median NDR remains tightly centered around
zero for both error distributions across all
sample sizes. This stability highlights the
robustness of the diagnostic’s central tendency,
stemming directly from the use of medians in
calculating the half-slopes, which are known
to be resistant to the influence of extreme
values present in heavy-tailed distributions.
While the median remains stable, the
variability of the NDR estimate, as indicated
by the slightly larger IQR for the t3 case,
increases somewhat. This implies that while
NDR reliably indicates linearity on average
even with heavy-tailed noise, individual
estimates may fluctuate more. Nevertheless,
the core ability to identify the underlying
linear structure is preserved. A similar pattern

of median stability but potentially increased
variability under heavy tails would be
expected for CHR due to its reliance on the
same median-based slopes.
Robustness to Contamination
Robustness is an important property for
evaluation of NDR and conventionally
resistance assessing performance is done
under explicit data contamination process. The
simulation design included scenarios with
10% vertical outliers and 10% bad leverage
points applied to the linear model with normal
errors. Based on the properties of median-
based estimators we consider:

 Vertical Outliers: We consider both NDR
and CHR having inherit robustness from

h
h


DOI: 10.64290/bima.v9i2B.1287

Bima Journal of Science and Technology, Vol. 9(2B) Jul, 2025 ISSN: 2536-6041

E-ISSN: 3115-4662

144

median estimation with high breakdown point.
Therefore, the diagnostics should remain
centered near their ideal linearity values (0
and 1, respectively), although variability
might increase. This reflects the median’s
resistance to extreme Y-values that do not
have unusual X-values.

 Bad Leverage Points: These pose a greater
problem due to extreme X-values and
deviation from the pattern of the bulk of the
dataset. Lverage points can potentially
influence the median calculation within one of

the three data partitions, causing biase for both
NDR away from 0 and CHR away from 1.
Quantifying the magnitude of this bias and the
inflation of variance, especially comparing
NDR and CHR under identical leverage
contamination, remains a key task for fully
characterizing their relative robustness.
Real-World Data Application Results
Table 1 provided practical insights into the
behavior of CHR and NDR to some selected
real-world datasets application.

Table 1: CHR and NDR Estimates on Some Real World Datasets.
Dataset bL bR CHR NDR

1 cars 4.20 5.20 1.24 0.11
2 faithful 0.10 0.04 0.38 -0.44
3 anscombe1 0.52 0.41 0.80 -0.11
4 anscombe2 1.06 0.12 0.11 -0.80
5 anscombe3 0.35 0.39 1.12 0.06

For the ‘cars‘ dataset, both diagnostics
suggested a mild upward curve
(CHR=1.24,NDR=0.11 ), consistent with the
physical expectation that stopping distance
increases more than linearly with speed. The
‘faithful‘ dataset showed in a more observable
downward curve pattern in terms of slope
change (CHR=0.38,NDR=−0.44 ), reflecting
its known complex bivariate structure which is
not captured by a single linear trend.
The Anscombe quartet data is considered to
offer a more particularly illustrative
comparisons (Anscombe 1973). Anscombe
Set 1 is established to be linear, but both
CHR value (0.80) and NDR value (-0.11)
indicated a slight deviation, which can be
attributed to the small sample size and specific
data point placement influencing the median
splits. But for Anscombe Set 2 (quadratic non-
linearity), both CHR (0.11) and NDR (-0.80)
strongly and correctly signaled a significant
downward-curving trend in the slopes.

However, the most notable is for Anscombe
Set 3 (linear with a single prominent outlier),
both diagnostics demonstrated excellent
robustness: CHR (1.12) remained close to 1,
and NDR (0.06) remained very close to 0.
This highlights the ability of these median-
based methods to resist the influence of
isolated outliers and capture the underlying
structure of the majority of the data, this is
indeed a key advantage in practical data
analysis.
Overall, the real-world applications align with
the simulation findings, demonstrating the
utility of both CHR and NDR in
characterizing different data structures and the
particular strength of their robustness in the
presence of outliers.
A visual inspection of the data and overlaid
half-slopes is illustrated in Figures 4 through 8.
Supporting the application of CHR and NDR
to the selected real-world datasets summary in
Table 1.
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Figure 4: Scatter plot of the ‘cars‘ dataset with overlaid median summary points (L, M, R) and
half-slopes (bL,bR). CHR = 1.24, NDR = 0.11.

Interactions for the ‘cars‘ dataset is plotted in
Figure 4, we can see that the right half-slope
(bR=5.20) is visibly steeper than the left half-
slope (bL=4.20). This visual observation of an
increasing slope is quantitatively supported by
CHR=1.24 (greater than 1) and NDR=0.11

(positive). Both diagnostics suggest a mild
upward curve, consistent with the physical
expectation that stopping distance increases
more than linearly with speed. The NDR value
indicates a relatively modest deviation from
perfect linearity.

Figure 5: Scatter plot of the ‘faithful‘ dataset with overlaid median summary points (L, M, R)
and half-slopes (bL,bR). CHR = 0.38, NDR = -0.44.

The ‘faithful‘ dataset plot in Figure 5 displays
a more complex structure within two main
clusters of data points. The half-slopes values,
bL=0.10 and bR=0.04, indicate that the slope
connecting the first cluster to the second (bL )
is relatively steeper than the slope within the
second cluster (bR). This results in CHR=0.38
and NDR=−0.44 . The two diagnostics tools
suggest a non-linear relationship, with the

negative NDR indicating an overall decrease
in the rate of change (a downward curve if a
single smooth function were considered). The
magnitude of the NDR (-0.44) signals a
substantial deviation from linearity than
observed in the ‘cars‘ dataset.
For a more insightful comparisons, we deploy
the Anscombe quartet provides particularly in
the following way:
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Figure 6: Scatter plot of Anscombe Set 1 (Linear) with overlaid median summary points (L, M,
R) and half-slopes (bL,bR). CHR = 0.80, NDR = -0.11.

For Anscombe Set 1 of Figure 6, is
established data set with approximately linear
relation among variables. The visual
impression is indeed one of linearity, though
with some scatter deviation of points. The
half-slopes bL=0.52 and bR=0.41 are
relatively close. The resulting CHR=0.80 and
NDR=−0.11 suggest a very slight downward

curve. Considering the small sample size
(N=11) and the specific arrangement of points
in Anscombe’s datasets (Anscombe 1973),
minor deviations from perfect linearity
indicators (CHR=1, NDR=0) are expected due
to the sensitivity of the three-group median
split to the individual point locations. The
NDR value being close to zero show
consistency with approximate linearity.

Figure 7: Scatter plot of Anscombe Set 2 (Non-linear) with overlaid median summary points (L,
M, R) and half-slopes (bL,bR). CHR = 0.11, NDR = -0.80.

Anscombe Set 2 (Anscombe 1973) as
visualized in Figure 7, displays a non-
linearity pattern close to quadratic form. The
left half-slope ( bL=1.06 ) is positive and
relatively steep, while the right half-slope
( bR=0.12 ) is much flatter, indicating a

significant decrease in the rate of change. This
strong visual non-linearity is captured
decisively by both diagnostics: CHR=0.11
(far from 1) and NDR=−0.80 (a large
negative value). The NDR value, being close
to -1, signals a significant deviation from
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linearity and correctly identifies the
downward-curving nature of the slope.

Figure 8: Scatter plot of Anscombe Set 3 (Linear with Outlier) with overlaid median summary
points (L, M, R) and half-slopes (bL,bR). CHR = 1.12, NDR = 0.06.

Finally, Anscombe Set 3 (Anscombe 1973) in
Figure 8 is characterized by an near perfect
linear relationship between most points, but
with one significant vertical outlier. Visually,
the median summary points (L, M, R) and the
estimated half-slopes (bL=0.35,bR=0.39) are
clearly determined by the main linear trend,
effectively handling the effect of outliers. This
visual robustness is reflected in the diagnostic
values: CHR=1.12 (very close to 1) and
NDR=0.06 (very close to 0). This result is
paramount as it empirically demonstrates the
robustness of these median-based methods to
isolated, extreme outliers, a critical advantage
in practical data analysis where such points
are common. Both CHR and NDR
successfully identify the underlying linearity
of the bulk of the data.
In summary, the application of CHR and NDR
to these real-world datasets generally aligns
with their expected behavior based on the
data’s known characteristics and visual
inspection. They provide quantitative
measures that correspond well with different
data structures, and importantly, the
Anscombe Set 3 example showcases their
valuable robustness to outliers.

DISCUSSION
Both simulation and real-world data
application results provide substantial insights
into the performance and practical utility of
the Normalized Difference Ratio (NDR) as a
newly proposed linearity diagnostic tool,
especially when compared to an established
Classical Half-Slope Ratio (CHR). Our
findings under ideal simulation conditions
(normal errors, no contamination) confirmed
that both diagnostics effectively identify
linearity and distinguish it from monotonic
non-linear patterns obtainable from Figures 1
and 2. NDR values centered tightly around 0
for linear data, while CHR values centered
around 1. For monotonic curves, both
correctly reflected the direction of curvature.
The real-world application to ‘Anscombe Set
1‘ (Anscombe 1973) which is approximately
linear and ‘Anscombe Set 2‘ (Anscombe 1973)
establish as quadratic corroborated these
findings, with both diagnostics generally
aligning with the known data structures. The
‘cars‘ dataset also showed consistent detection
of mild non-linearity by both methods, as seen
in Figure 4 and Table 1.
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Key differences highlighted in the
simulation’s framework, particularly an
established boundedness for NDR’s on
−1, 1 scale, proved advantageous. This was
evident for the case of non-monotonic V-
shape models in the simulations, which NDR
clearly flagged with values near +1. CHR’s
negative value for this case was obscured by
the necessary log-scale visualization. The
‘faithful‘ dataset in Figure 5, with its complex
structure, yielded a strong negative NDR (-
0.44), indicating a significant overall decline
in slope estimate across the segments, a
pattern also captured, though differently
scaled, by CHR (0.38). The robustness
analysis against heavy-tailed errors of Figure
3 supported NDR’s utility. Its median value
remained stable around 0 for linear data even
under t3 errors, demonstrating the precision of
its median-based formulation. The application
to ‘Anscombe Set 3‘in Figure 8 provided
additional compelling real-world evidence of
this robustness: accordingly, NDR (0.06) and
CHR (1.12) yielded values near their
respective linearity indicators, effectively
resisting the effect of outliers and capturing
the underlying linear trend of the majority
data. This practical demonstration of
robustness is a critical advantage of these
methods.
NDR in practice offered several advantages.
Its bounded scale simplifies interpretation and
comparison across datasets. The sign of NDR
provides immediate, unambiguous guidance
for potential data transformations. This was
consistent across both simulated and real
datasets. For example, the positive NDR for
the ‘cars‘ dataset and the negative NDR for
‘Anscombe Set 2‘ directly suggest the type of
curvature present.

CONCLUSION
In this study a Normalized Difference Ratio
(NDR) for robust linearity diagnostic is

proposed, The NDR’s properties were
explored and its performance with the
established Classical Half-Slope Ratio (CHR)
are compared according to simulations and
real-world data applications. The key findings
are:

 Both NDR and CHR effectively identify
linearity and non-linear patterns under ideal
conditions, as shown in simulations
framework and real-world datasets like
Anscombe Sets 1 and 2.

 The NDR’s bounded −1,1 scale exhibit its
clear advantage with linearity at 0 as
compared to CHR. It also offers advantages in
consistent interpretation and visualization
across diverse data structures, including non-
monotonic forms (simulation V-shape model)
and complex real-world data (e.g.,
‘faithful‘ dataset), where CHR’s visualization
can be problematic.

 NDR is robust to heavy-tailed error
distributions in simulations, maintaining a
stable median at zero for linear data.

 Crucially, both NDR and CHR exhibited
strong robustness to a significant outlier in the
‘Anscombe Set 3‘ real-world data, correctly
identifying the underlying linear trend.

 The sign of NDR is balanced and consistent
by directly indicating the direction of
curvature, providing clear guidance for data
transformations, as observed in both simulated
curves and real datasets of ‘cars‘ and
‘Anscombe Set 2‘.
In general, Compared to CHR, the NDR offers
a combination of robustness, a standardized
bounded scale, and straightforward sign-based
directional interpretation. While further
investigation into its behavior under severe
leverage contamination can be explored, the
NDR presents in this research a promising,
practical, and robust tool for Exploratory Data
Analysis, effectively complementing visual
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inspection and aiding in informed model
building decisions.
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