DOI: 10.56892/bima.v8i4B.1198

Energy Efficient Software Development: An Integrated Approach for Green Computing and
Enhanced Software Performance

Samuel Awuna Kile'*, Iliyas Ibrahim Iliyas' and Jeremiah Yusuf Bassi?

"Department of Computer Science, University of Maiduguri, Maiduguri, Borno State, Nigeria
’Department of Computer Engineering, Federal Polytechnic, N’yak, Shendam, Plateau State,
Nigeria
Corresponding Author: awunkile2@gmail.com
ABSTRACT

With the increasing adoption of green computing for sustainability, energy-efficient computing
has become essential, particularly in software development. This study focuses on two critical
software metrics: Cyclomatic Complexity and Software Defect Density. The goal is to achieve
energy-efficient software development as an integrated approach to green computing and
improved software performance. Specifically, the study models energy-efficient software
development in the context of green computing using cyclomatic complexity and software defect
density, simulates these models, and analyzes their impact on energy-efficient software
development. Experimental methodology is adopted for the study. A sample Python code was used
to illustrate cyclomatic complexity, while the JIRA tool was utilized to analyze various software
versions for defects density. Energy quantization metrics were also employed to assess these
effects on CPU utilization and memory usage. The research presented a framework that
incorporates these metrics into the software development process to enhance energy efficiency. By
minimizing decision points and addressing defects early on, the study demonstrated how software
can be optimized to reduce carbon footprints while maintaining high performance. The results
indicated that lowering complexity and defects leads to shorter processing times and improved
resource utilization, aligning with the objectives of green computing. This approach provides
valuable insights for software engineers seeking to create sustainable software that balances
performance with environmental responsibility.

Keywords: Cyclomatic complexity, CPU Utilization, Software Defects Density, Green
Computing, Memory Optimization.

INTRODUCTION It is well understood that computer hardware
depends on software and a power source to
function. Since software requires energy to run,
its operation indirectly consumes fossil fuels, a
primary global energy source. High levels of
software usage can therefore lead to greater
emissions, adding to pollution.
Environmentally aware software companies
are now focusing on not just ensuring their
code works effectively, but also that it is
energy-efficient. The energy a piece of
hardware consumes depends on the efficiency
of the software it runs; two similar programs
may have vastly different energy demands,

Industries and organizations are increasingly
adopting environmental sustainability
practices to lower the emissions generated by
their activities. The information and
communication technology (ICT) sector has
expanded rapidly, reaching global adoption
across various levels. Both hardware and
software are essential in ICT, but software
plays a central role by enabling hardware
functionality. However, widespread software
use is contributing to environmental issues.

212

mailto:awunkile2@gmail.com

s

with the more efficient one being considered
environmentally friendly or "green." This has
spurred discussions about developing energy-
efficient software, a topic not extensively
covered in current research.

Recent studies indicate that the ICT industry
accounts for around 4% of global greenhouse
gas emissions, a level comparable to that of
the aviation sector. This percentage is likely to
grow as more people gain internet access
worldwide and energy-intensive activities like
Bitcoin mining continue to expand.
Governments and utility companies are
increasingly regulating cryptocurrency mining
due to its high energy requirements. Despite
these regulations, ongoing software usage
continues to challenge environmental
sustainability, highlighting the need to design
software with a focus on efficient energy use.

Ineffective green practices in software
development harm both the industry and the
environment by increasing energy
consumption, accelerating the accumulation of
electronic waste, and contributing to broader
ecological issues. This underscores the
pressing need for sustainable development
methods and effective models, which are
currently lacking in many software processes.

One promising approach to addressing these
issues involves reducing software runtime as a
measure to counter climate change. Green
computing is emerging as a potential solution,
though a key area that lacks sufficient study is
the impact of cyclomatic complexity and
software defect density on environmental

sustainability =~ within green computing
practices.

Several strategies have been introduced to
improve energy efficiency in software
development, such as energy-aware
programming, where developers create

optimized code to reduce CPU cycles and
memory consumption. Tools like energy

DOI: 10.56892/bima.v8i4B.1198

213

profilers help developers pinpoint energy-
intensive code sections for optimization.
Additionally, green development frameworks,
like Eco-IDE, offer real-time analysis of code
energy impact, aiding developers in making

sustainable choices throughout the
development process. However, the
application of models like cyclomatic

complexity and software defect density to
enhance energy-efficient development remains
a research gap that this study aims to address.

Server virtualization and cloud computing are
also gaining popularity, allowing organizations
to consolidate workloads and use computing
resources more effectively. To further advance
sustainable practices, educational institutions
are incorporating green computing concepts
into software engineering curricula, raising
awareness of sustainable practices among
future developers. Together, these efforts
reflect the software industry’s move toward
sustainable methods that mitigate the
environmental footprint of software systems.

Despite rising awareness of sustainability,
many agile, DevOps, and traditional software
development methodologies still lack criteria
for integrating sustainability within their
development cycles. This gap indicates a need
for tools and processes that enable developers
to consider sustainability as an essential aspect
of software quality. Metrics like cyclomatic
complexity and software defect density are
key to advancing green computing by
improving software quality and reducing
resource consumption. Cyclomatic complexity
provides a measure of code logic complexity,
helping developers simplify code structures
and reduce decision points. Lowering
complexity translates to fewer CPU cycles and
less memory wusage, supporting energy-
efficient software execution. Conversely, high
complexity results in longer processing times
and increased energy demands, making it a
critical factor for sustainable computing

s

(McCabe, 1976). Optimizing cyclomatic
complexity allows organizations to create
greener software systems that utilize hardware
more efficiently.

Software defect density, which tracks the
number of defects per thousand lines of code
(KLOC), affects the need for debugging,
patching, and testing, all of which demand
significant computational resources and energy.
Reducing defects early in the development
cycle can lower the frequency of updates and
reprocessing, reducing the carbon footprint of
software (IBM, 2023). By addressing both
complexity and defects, organizations can
develop more stable, efficient software that
conserves energy during both operation and
maintenance.

Incorporating these metrics leads to better
resource management, reduced energy waste,
and enhanced sustainable computing, making
them essential for minimizing an
organization’s environmental footprint. This
study aims to establish a model for energy-
efficient software development, integrating
green computing with improved software
performance. Specifically, it will use
cyclomatic complexity and software defect
density metrics to model, simulate, and
analyze the impacts of energy-efficient
software development in green computing.
The research questions this study will address
include: How can cyclomatic complexity and
software defect density be modeled to improve
energy efficiency in software development?
What are the best simulation techniques for
testing these models? What measurable
impacts do these models have on energy
efficiency and software performance?

Literature Review

Freed et al. (2023) highlighted that the goal of
green software engineering is to create reliable,
durable, and sustainable software that meets
user needs while minimizing its environmental

DOI: 10.56892/bima.v8i4B.1198

214

impact. Similarly, Jullen (2023) noted that
recent technological advancements and the
growing global emphasis on environmental
sustainability offer increasing opportunities for

software developers to contribute to
conservation efforts and sustainable
development.

Zartis (2023) emphasized that sustainable
software development focuses on reducing the
environmental impact of software applications.
This approach involves adopting practices that
aim to lower energy consumption, reduce
carbon emissions, and minimize the overall
ecological footprint of software products. In
the study, it explored the benefits, challenges,
and techniques for creating greener software
solutions.

Simon et al. (2023) argued that the
environmental footprint of software service
development can be influenced by various
factors, including human inputs and
infrastructure decisions. They observed that
existing approaches often fall short by not
addressing the entire lifecycle of software
services or covering different categories of
environmental impacts. Their study introduced
a methodology and model to help software
developers and stakeholders estimate the
environmental footprint of projects, providing
insights into different phases of the software
lifecycle and identifying key areas for
improvement.

Alena (2024) emphasized the need for
sustainable software development in a world
increasingly focused on sustainability.
However, many companies still follow non-
sustainable software practices, which increase
energy consumption and lead to inefficient
development processes. Green computing,
which aims to create energy-efficient software
systems, plays a central role in reducing the
environmental impact of software
development through optimization of energy
consumption and resource management.

s

Researchers have increasingly focused on the
intersection of software engineering and
sustainability. Naumann et al. (2011)
underscored the need for sustainable software
engineering to integrate energy-efficient
coding practices, reduce hardware usage, and
account for environmental impact at each
stage of the software lifecycle. Dick et al.
(2013) also emphasized the importance of
considering energy consumption as a key
quality attribute in software design, especially
in cloud-based applications.

Capra et al. (2012) discussed how software
can be designed to minimize energy
consumption through both algorithms and
architecture. Techniques like dynamic resource
allocation, which adjusts resource
consumption based on workload, were
introduced to save energy. Similarly, Pinto and
Castor (2017) developed energy consumption
analysis tools to help developers identify and
refactor energy-inefficient code for better
performance.

A key challenge in green software
development is defining metrics for
sustainability. Agarwal and Nath (2012)
proposed green computing metrics to measure
power usage, resource allocation, and
emissions during software operation, helping
guide developers in achieving sustainability
goals. Pineda et al. (2018) suggested
integrating these metrics into development
methodologies, such as Agile and DevOps, to
foster a sustainability-oriented culture in
software projects.

Cloud computing also plays a critical role in
sustainable software development. Beloglazov

et al. (2012) explored how cloud
infrastructures support energy-efficient
computing by using virtualization and

resource consolidation to minimize idle
resources and reduce power consumption.
They argued that software designed for cloud
environments should optimize resource usage

DOI: 10.56892/bima.v8i4B.1198

215

by leveraging cloud-native features like auto-
scaling and serverless architectures.

Lago et al. (2015) introduced the Sustainable
Software Product Lifecycle (SSPL) concept,
which emphasizes the importance of
integrating sustainability throughout every
phase of software development, from initial
requirements engineering to deployment and
maintenance. They proposed the incorporation
of green requirements elicitation, integrating
sustainability goals into the early stages of
software design.

Despite increasing interest in sustainable
software practices, challenges persist,
including the absence of standardized

guidelines and limited developer awareness.
Penzenstadler et al. (2014) recommended that
software engineering curricula should include
education and training programs focused on
sustainability. They also stressed the necessity
for tools and frameworks that can effectively

incorporate sustainability practices into
traditional software development
environments.

Software codes are fundamental to software
development and implementation, enabling
software to function and be deployable. This
study focuses on improving software codes,
also known as green coding, to support green
computing and environmental sustainability.

Numerous research efforts and organizations
have embraced green coding to promote
environmental sustainability in software
development. IBM Cloud Education (2023)
defines green coding as an environmentally
sustainable computing practice aimed at
minimizing the energy required to process
lines of code, thereby helping organizations
lower their overall energy consumption. Many
organizations have set greenhouse gas
emission reduction targets in response to
climate change and global regulations, and

s

green coding is one method to help achieve
these sustainability objectives.

Green coding is a component of green
computing, which seeks to minimize
technology's environmental impact, including
reducing the carbon footprint in high-intensity
operations such as manufacturing lines and
data centers, as well as in daily business
operations. This broader green computing
initiative also encompasses green software—
applications developed using green coding
practices.

The importance of green computing goes
beyond technological advancement. The
electronics industry has significantly
contributed to hazardous waste production,
with electronic waste containing toxic
substances that harm the environment. The
buildup of electronic waste and the resource-
intensive production of electronic components
highlight the urgent need for adopting green
computing practices.

Each year, countries around the world dispose
of millions of computers, which adds to the
growing problem of electronic waste.
Adopting green computing practices can help
alleviate these issues and foster a more
sustainable electronic environment. Although
advancements such as server virtualization and
current green computing strategies have made
progress in lowering energy consumption,
ongoing innovation is necessary to tackle new
developments like artificial intelligence and
data analytics.

Cyclomatic complexity is crucial for creating

efficient, maintainable, and sustainable
software systems by promoting better code
organization, lowering error rates, and

optimizing resource usage. Introduced by
McCabe (1976), it measures a program’s
complexity by counting the number of linearly
independent paths in the source code, derived
from a control flow graph where nodes

DOI: 10.56892/bima.v8i4B.1198

216

represent code blocks and edges show the
control flow. This metric is essential for
enhancing software development efficiency,
particularly in areas such as testing,
maintainability, and overall code quality.

In practice, cyclomatic complexity helps
assess a program's logical structure. High
complexity often signals code that is harder to
maintain, test, and debug, which can result in
increased development costs and extended
timelines (Schulz, 2010). By identifying
highly complex functions, developers can
refactor code into smaller, more modular units,
enhancing readability and reducing the
potential for bugs. It also simplifies testing by
determining the minimum number of test cases
required to cover all execution paths (Watson
& McCabe, 1996).

Moreover, controlling cyclomatic complexity
is associated with more efficient resource use,
as simpler code typically consumes fewer
CPU cycles and memory. This leads to
performance optimization and supports
sustainable, green computing practices (Capra
etal., 2012).

Monitoring and reducing software defect
density is crucial for effective software
development. This practice enhances software
quality, lowers maintenance costs, and
supports more sustainable development
processes. Software defect density, a key
metric in software engineering, measures the
number of defects per unit size of software,
usually per thousand lines of code (KLOC). It
serves as an important indicator of software
quality, reflecting the likelihood of errors and
the stability of the codebase. Managing defect
density helps teams evaluate the reliability and
maintainability of their software throughout its
lifecycle.

High defect density often leads to frequent bug
fixes, increased testing, and additional
maintenance efforts, which can extend

DOI: 10.56892/bima.v8i4B.1198

development timelines and raise costs
(Daskalantonakis, 1992). Addressing defects
early in the development process reduces
defect density, resulting in fewer deployment
issues and less need for post-release patches.
This approach improves resource management
and shortens development cycles, thus
boosting overall efficiency (Fenton & Ohlsson,
2000).

Additionally, lowering defect density has a
direct effect on energy efficiency, which is
increasingly important in sustainable software
engineering. Frequent reprocessing and
debugging consume more computational
resources, such as CPU and memory, which
increases energy usage. By minimizing defects,
organizations can reduce energy consumption
in software testing environments, aligning
with green computing objectives (Capra et al.,
2012).

In summary, green computing offers a chance
for businesses and individuals to make small
adjustments that, when combined, can have a
significant positive effect on the environment.

MATERIALS AND METHODS

This study utilizes an experimental research
approach, focusing on models of cyclomatic
complexity and code defect density to support
green coding practices. To measure cyclomatic
complexity, a sample Python code was created
for testing and analysis. For defect density, a
dedicated JIRA project was set up to log
defects, using the JIRA Query Language (JQL)
to generate queries that identified the total
number of defects. Data unrelated to defects,
such as tasks or enhancements, was excluded.
Labels were applied to classify defects by type
or severity, allowing for defect density

calculations based on these categories. Query
results were evaluated on the JIRA dashboard,
where defect density was calculated. Metrics
on energy consumption and reduction were
used to assess the effectiveness of these
models in promoting environmentally
sustainable software development.

Green Coding Modeling for Software
Sustainability and Efficiency

1. Cyclomatic Complexity: Cyclomatic
complexity measures a program’s code
complexity by counting the number of unique
paths within it. This metric evaluates elements
like maintainability, readability, and error
potential, serving as a valuable tool for
developers and testers to assess code quality
and efficiency.

However, cyclomatic complexity alone
doesn’t determine software quality. While it
highlights maintenance and testing difficulties,
it should be considered alongside expert
developer insights. Cyclomatic complexity
measures the logical complexity of source
code by counting independent paths and
decision points that impact the execution flow.

A higher cyclomatic complexity reflects more
complex code that may be harder to maintain,
while a lower complexity suggests simpler,
more understandable code. This metric
identifies maintenance and testing risks,
helping developers and testers enhance the
reliability, efficiency, and maintainability of
software systems. Cyclomatic complexity
represents code as a graph, showing
instruction blocks and their links, with the
number of paths depicted as the Cyclomatic
Complexity Number (CCN).

Cyclomatic complexity is given as CC = E—N + 2P (1)
where E refers to the connections between the program’s parts,

N refers to the parts themselves, and

P refers to the number of ways to exit or end the program.

217

DOI: 10.56892/bima.v8i4B.1198

Using this python code to demonstrate cyclomatic complexity for code with a single exit point (a
common scenario): CC=Number of decision points (if, for, while)+1, as presented here.
def sample function(x):
ifx>0:
print("Positive")
elif x <0:
print("Negative")
else:
print("Zero")
In this illustration, there are 3 decision points: if, elif, and else. As such,
CC=3+1=4.
Therefore, the cyclomatic complexity of the function is 4, as shown in figure 1.0.

Cwyclomatic Complexity vs Decision Points

10

Cyclamatic Complexity

> a 3 8 16
Mumber of Decision Paints

Figure 1: Cyclomatic Complexity vs Decision Points.

Figure 1.0 shows how the number of decision = Cyclomatic complexity can be calculated
points in code—such as if, for, and while through various methods in software
statements—directly influences cyclomatic engineering, such as manually analyzing
complexity, with complexity increasing control flow graphs or using cyclomatic
linearly as more decision points are introduced. = complexity calculators, some of which can
automatically review code and provide

Essentially, this formula implies that a .
complexity assessments.

program’s cognitive complexity grows with
additional decision points like loops and This metric serves multiple roles in software
conditional statements. Higher decision point development:

counts lead to increased cyclomatic (i)
complexity. Cyclomatic complexity, therefore,

helps assess a program's stability by measuring

the independent paths within a code segment;

fewer independent paths generally suggest
higher code quality, as they indicate simpler

code.

For developers: It aids in making
structural decisions. High cyclomatic
complexity can signal that a function
may be overly complex and might
benefit from refactoring or
simplification.

218

(i) For testing: It helps determine the
necessary level of testing. Cyclomatic
complexity indicates the minimum tests
required for thorough coverage, essential

DOI: 10.56892/bima.v8i4B.1198

for wunit, integration, and regression
testing.
2. Defect Density: Defect density is the

number of defects found in a piece of software
relative to its size. It is given as:

Total Number of Defects

Defect Density —

where KLOC stands for thousands of lines of code.

For instance, suppose a software module has
10,000 lines of code (LOC). During testing, 50
defects were found. The defect density would
be:

Defect Density:
50/10,000 =0.005 defects per line of code.

This indicates that the software has 0.005
defects per line of code. This information is
also depicted graphically in figure 2.0.

Software Defect Density vs Lines of Code
0.00600
0.00575

0.00550

f=]
=
f=]
wl
L)
w

0.00500

=}
=
=3
B
~
N

0.00450

Defect Density (Defects/LOC)

0.00425

0.00400

].ll'.'lI 10° 1&15
Lines of Code (LOC)

Figure 2: Defect Density vs Lines of Code

Graph.

Figure 2 depicts software defect density in
relation to Lines of Code (LOC). As the
codebase grows, defect density typically
decreases, although larger codebases can still
gather more defects overall. The logarithmic
scale accommodates the wide range of LOC

Size of the Software (e.g., KLOC)

2)

values. While defect density declines with
increased code, the absolute number of defects
tends to rise in larger projects.

Cyclomatic complexity and defect density are
two commonly applied metrics in software
engineering used to evaluate software quality
and maintainability. Cyclomatic complexity
measures the logical intricacy of the code,
while defect density indicates the likelihood of
defects in proportion to the software’s size.

Energy Reduction Quantization

To measure the decrease in energy
consumption resulting from enhanced software
performance, we can establish metrics based
on cyclomatic complexity (CC), defect density
(DD), and their impact on CPU usage and
memory consumption. We assume the
following:

Energy consumption is directly linked to CPU
usage and memory consumption.

A reduction in both CC and DD improves
software performance, which in turn lowers
energy consumption.

The quantitative metrics are outlined as
follows:

a. Energy Consumption Formula

For each software version, energy
consumption (measured in watts) is directly
proportional to the levels of CPU utilization
and memory consumption:

Energy Consumption = (CPU Utilization x Memory Usage) X Scaling Factor 3)

b. Energy Reduction (%)

DOI: 10.56892/bima.v8i4B.1198

Energy reduction is determined in relation to the baseline (Version 1) by applying the following

formula;

Energy Reduction = (Energy Consumption (Version 1) — Energy Consumption (Current Version) /

(Energy Consumption (Version 1)) x 100
RESULTS

Results of the evaluation and analysis of these
metrics and some software versions on the
JIRA platform for cyclomatic complexity and
software defects density is presented on table
1.

Table 1 illustrates that enhancing software
performance by lowering complexity and
defect density results in notable decreases in
energy consumption, thereby promoting more
efficient and sustainable systems. Presented
below is an analysis of the table 1.

“4)

Version 1 (High CC, High DD) acts as
the baseline, exhibiting the highest
energy consumption at 37,500 watts.
With a decrease in cyclomatic
complexity and defect density:

Version 2 demonstrates a 22%
reduction in energy consumption.

Version 3 shows a 41% reduction.
Version 4 realizes a 58% reduction.

Version 5 (Optimized) achieves the
most significant energy reduction, with
a 72% decrease in energy consumption
compared to the baseline

Graphical illustrations deduced from table 1
above are represented below:

Table 1: Analysis of software versions and metrics of cyclomatic complexity and defects density.

Software Cyclomatic Defect CPU
Version Complexity Density Utilization
(CO (DD) (%)

Energy

Memory Execution Energy

Consumption Usage Time (ms) Reduction

(Watts)

(MB) (%)

Version 1 15 0.05 75%
(High CC,

High DD)

Version 2 10 0.04 65%
(Moderate

CC, High

DD)

Version 3 8 0.03 55%
(Low CC,

Moderate

DD)

Version 4 5 0.02 45%
(Low CC,

Low DD)

Version 5 3 0.01 35%
(Optimized

CC, Low

DD)

100 W

90 W

5 W

60 W

50 W

500 MB 500 ms Baseline

450 MB 450 ms 10%

400 MB 400 ms 25%

350 MB 350 ms 40%

300MB 300ms 50%

220

CPU Utilization Before and After Energy Reduction

—a— Before Opbimization
—#— Afer Optsmazation

1o

=)
=]

wn
=]

CPU Utilization (%)

40

Version 1 Wpiol igiisite &1L HigbiBlertdinibtl; [Opthited CC, Low DO}

Software Versions

Figure 2: Graph of CPU Utilization vs
Software Versions.

Figure 2.0 illustrates the use of CPU resources
before and after energy reduction across
different software versions on the JIRA
platform. The data indicate that following
optimization, there is a decrease in CPU
resource utilization compared to the
unoptimized versions, which exhibit higher
levels of CPU resource usage.

Memory Usage Before and After Energy Reduction

500 —#— Before Optimization
—e— After Optimization

450

400

Memory Usage (MB)

350

300

B0

Software Versions

ABEE [Dptifrided CC, Low DD)

Wersion 1 WHScEofC: Hit

Figure 3: Memory Usage vs Software
Versions.

Figure 3 displays the memory resource usage
before and after energy reduction for different
software versions on the JIRA platform. The
results indicate that after optimization,

221

DOI: 10.56892/bima.v8i4B.1198

decreases

utilization
compared to the unoptimized versions, which
demonstrate higher levels of memory resource
usage.

memory resource

Green computing aims to minimize the
environmental impact of computing systems
by reducing energy consumption, improving
resource efficiency, and promoting sustainable
practices. In software engineering, cyclomatic
complexity and software defect density are
key metrics that greatly influence the
efficiency, maintainability, and sustainability
of software systems.

DISCUSSION

Cyclomatic Complexity (CC) and Green
Computing

Cyclomatic complexity quantifies the number
of linearly independent paths in source code,
reflecting the program's complexity. Increased
complexity often results in code that is more
difficult to maintain and less efficient, which
impacts resource usage and energy
consumption in the context of green
computing, leading to:

(1) Increased processing power: More complex
code typically involves complicated branching,
loops, and decision-making, which require
additional CPU cycles. This complexity results
in higher energy consumption due to extended

execution times and increased hardware
requirements.
(i) Memory overhead: Complex code

generally requires more memory for data
handling, processing, and storage, leading to
greater overall power consumption. Efficient
memory management is crucial for sustainable
software development.

(i11) Difficulty in maintaining and updating:
Highly complex code is more challenging to
maintain, making bug fixes, updates, and
refactoring less efficient. When developers
struggle to manage or enhance a codebase, the

s

long-term sustainability of software systems
may decline, leading to more frequent updates
or rewrites. Each update can increase the
carbon footprint associated with software
development.

(iv) Poor optimizing for energy-efficient code:
Streamlining code by minimizing decision
points and branches can result in more energy-
efficient execution. Refactoring to remove
unnecessary complexity can reduce CPU
cycles, lower energy requirements, and
contribute to greener computing.

Software Defects Density (SDD) and Green
Computing

Software defect density measures the number
of defects per unit of software size, typically
expressed in lines of code. The existence of
defects affects the software's performance,
reliability, and resource consumption, which in
turn influences sustainable = computing
practices in the following ways:

(1) Performance Degradation: Software with a
high defect density often experiences
performance issues, such as inefficient
processing, memory leaks, and redundant
operations. These problems can result in
increased energy consumption, as defective
software may require more resources (CPU,
memory, network) to carry out its tasks
compared to well-optimized, defect-free
software.

(i1) Higher Energy Usage for Debugging and
Testing: Locating and fixing software defects

usually necessitates extensive testing,
simulations, or real-time debugging.
Continuous debugging of defect-ridden

software lengthens development cycles and
leads to significant energy consumption from
the computing resources needed for testing.

(ii1) Frequent Software Updates and Patches: A
high defect density often requires regular
patches and updates. This involves

DOI: 10.56892/bima.v8i4B.1198

222

redeploying it across

code,
various systems, and sometimes requiring user
intervention to install the updates. This cycle

recompiling

utilizes resources and raises the carbon
footprint linked to software maintenance and
deployment.

(iv) Impact on Hardware Usage: Software with
a high defect density can place a strain on
hardware resources by causing inefficiencies,
such as excessive CPU usage or poor memory
management. In the context of green
computing, extending the lifespan of hardware
is essential, and inadequately optimized
software with numerous defects can lead to

premature hardware deterioration and
increased electronic waste.
CONCLUSION

Cyclomatic complexity and software defect
density are both wvital factors in green
computing. Elevated levels of complexity and
defect density lead to inefficient resource
utilization, higher energy consumption, and
increased hardware wear. Properly managing
these software quality metrics can enhance
sustainable software development practices,
contributing to a reduction in the
environmental impact of computing.

Recommendations for Green Computing
via Software Metrics

1. Optimize Cyclomatic Complexity

(1) Revise the code to remove unnecessary
decision points and loops, leading to simpler
and more energy-efficient code paths.

(i1) Implement a modular software architecture
by dividing the code into smaller, independent
units that can be optimized for specific tasks,
which helps minimize computational overhead

2. Reduce Software Defect Density

(i) Perform early and comprehensive defect
detection using techniques such as static code
analysis and automated testing to reduce the

o CIFTEIRY A
. g

necessity for extensive reprocessing and
debugging, thereby helping to decrease energy
consumption during development.

(i1)) Emphasize energy-aware programming
and defect detection practices by utilizing
energy profiling tools to identify and resolve

defects that lead to high resource consumption.

Suggestions for Further Research

Future research should seek to advance
beyond conventional metrics such as
cyclomatic complexity and defect density by
incorporating energy-awareness throughout all
phases of software development. By
concentrating on dynamic profiling, Al-driven
optimizations, hybrid metrics, and domain-
specific adaptations, research can address the
shortcomings of existing methods and develop
more sustainable, energy-efficient software
solutions.

REFERENCES

Agarwal, S., & Nath, A. (2012). Green
computing: A new horizon of energy

efficiency and electronic waste
minimization. Proceedings of the 2012
International Conference on

Communication Systems and Network
Technologies, 665-671.
Alena, P. (2024). Best
Sustainable Software

Practices for
Development:

Green Efficiency Principles. Available at:

https://lasoft.org/blog/best-practices-for-
sustainable-software-development/.
Retrieved 12/07/2024.

Beloglazov, A., Buyya, R., Lee, Y. C, &
Zomaya, A. Y. (2012). A taxonomy and
survey of energy-efficient data centers
and cloud computing systems. Advances
in Computers, 82, 47-111.

Capra, E., Francalanci, C., & Slaughter, S. A.
(2012). Is software “green”? Application
development environments and energy
efficiency in open-source software.

£ Bima Journal of Science and Technology, Vol. 8(4B) Jan, 2025 ISSN: 2536-6041 §° jdl

DOI: 10.56892/bima.v8i4B.1198

223

Information and Software Technology,
54(1), 60-71.

Daskalantonakis, M. K. (1992). A practical
view of software measurement and
implementation experiences within
Motorola. IEEE Transactions on
Software Engineering, 18(11), 998-1010.

Dick, M., Naumann, S., & Kuhn, N. (2013). A
model for green software development
and its industry applications. Journal of
Systems and Software, 86(4), 1080-1086.

Fenton, N. E., & Ohlsson, N. (2000).
Quantitative analysis of faults and
failures in a complex software system.
IEEE Transactions on Software
Engineering, 26(8), 797-814.

Freed, M., Bielinska, S., Buckley, C., Coptu,
A., Yilmaz, M., Messnarz, R. & Clarke,
P. M. (2023). An Investigation of Green
Software Engineering. In: 30th European
Conference on Software Process
Improvement (EuroSPI 2023), 30 Aug -
1 Sept 2023, Grenoble, France. ISBN
978-3-031-42306-2.

IBM Cloud Education (2023). Why Green
Coding 1s a Powerful Catalyst for
Sustainability Initiatives. Available at:
https://www.ibm.com/blog/green-
coding/. Retrieved 10/06/2024.

Jullien (2023). Software Development in the
Environmental Sector. Available at:
https://www.bocasay.com/software-
development-environmental-sector/.
Retrieved 12/06/2024.

Lago, P., Muccini, H., & Penzenstadler, B.
(2015). Framing sustainability as a
software quality attribute.
Communications of the ACM, 58(10),
70-78.

McCabe, T. J. (1976). A complexity measure.
IEEE Transactions on Software
Engineering, (4), 308-320.

Naumann, S., Dick, M., Kern, E., & Johann, T.
(2011). The GREENSOFT model: A
reference model for green and

https://lasoft.org/blog/author/porokh/
https://lasoft.org/blog/best-practices-for-sustainable-software-development/
https://lasoft.org/blog/best-practices-for-sustainable-software-development/
https://www.ibm.com/blog/green-coding/
https://www.ibm.com/blog/green-coding/
https://www.bocasay.com/software-development-environmental-sector/
https://www.bocasay.com/software-development-environmental-sector/

o CIFTEIRY A
. g

sustainable software and its engineering.
Sustainable Computing: Informatics and
Systems, 1(4), 294-304.

Penzenstadler, B., Calero, C., Franch, X., &
Seyff, N. (2014). Sustainability in
software engineering: A systematic
literature review. Journal of Systems and
Software, 91, 70-94.

Pinto, G., & Castor, F. (2017). Energy
efficiency: A new concern for

application software developers.
Communications of the ACM, 60(12),
68-75.

Schulz, A. (2010). Improving code quality by
managing cyclomatic ~ complexity.
Journal of Software Engineering, 15(2),
85-92.

Schulz, J. (2010). Managing software
complexity: A review of McCabe’s
complexity metric. Journal of Software
Engineering and Applications, 3(10),
983-988.

Simon, T., Rust, P., Rouvoy, R. & Penhoat, J.
(2023). "Uncovering the Environmental
Impact of Software Life Cycle," in 2023
International Conference on ICT for
Sustainability (ICT4S), Rennes, France,
2023 pp- 176-187.
doi:10.1109/ICT4S58814.2023.00026

Taylor, B. (2024). Cyclomatic complexity:
Definition and limits in understanding
code quality.
https://getdx.com/blog/cyclomatic-
complexity/. Retrieved 12/07/2024

Watson, A.H. & McCabe, T. J. (1996).
Structured testing: A testing
methodology using the cyclomatic
complexity metric. NIST Special
Publication, 500-235.

Zartis Team (2023). Sustainable Software
Development Practices and Strategies.
Available at:
https://www.zartis.com/sustainable-
software-development-practices-and-
strategies/.

L% Bima Journal of Science and Technology, Vol. 8(4B) Jan, 2025 ISSN: 2536-6041 I pdl

DOI: 10.56892/bima.v8i4B.1198

224

https://getdx.com/blog/cyclomatic-complexity/
https://getdx.com/blog/cyclomatic-complexity/
https://www.zartis.com/sustainable-software-development-practices-and-strategies/
https://www.zartis.com/sustainable-software-development-practices-and-strategies/
https://www.zartis.com/sustainable-software-development-practices-and-strategies/

