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ABSTRACT
The early detection of hepatitis is important for effective treatment and the prevention of severe
liver damage. Existing diagnostic methods often struggle in identifying early-stage hepatitis due to
challenges such as data complexity, imbalanced datasets, and inefficient feature extraction
methods in traditional models. This research introduces a new approach for early hepatitis
detection using a Convolutional Neural Network (CNN) optimized with a Genetic Algorithm (GA)
in order to gain better performance. Leveraging the hepatitis dataset, the study addresses the
critical challenge of early diagnosis, which is key to improving patient outcomes and managing
disease progression. The methodology trains a CNN model on patient data, with the GA employed
to fine-tune hyperparameters for optimal performance. The model achieved a high accuracy of
more than 97% in correctly identifying early-stage hepatitis. High AUC-ROC scores further
validate the model's reliability and effectiveness. Compared to other machine learning and deep
learning models, the GA-optimized CNN consistently outperformed its counterparts, highlighting
its potential as a valuable tool in clinical settings. This research emphasizes the significant role
and impact advanced AI techniques can play in medical diagnostics, particularly in the early
detection of diseases like hepatitis, where timely intervention is critical.
Keywords: Genetic Algorithm (GA) Optimization, Convolutional Neural Network (CNN), Early
Hepatitis Detection, Hyperparameter Tuning, Performance Evaluation

INTRODUCTION
Diagnosing diseases, particularly hepatitis, is
crucial yet complex in the medical field.
Hepatitis, a liver disease caused by viruses,
can lead to severe health issues like cirrhosis
and liver cancer if not detected early (Alfyani,
2020; Yarasuri et al., 2019).
Deep learning, a branch of machine learning,
helps improve diagnosis by analyzing health
data to accurately detect hepatitis. This
technology outperforms traditional methods
by using deep neural networks. Nature-
inspired algorithms further enhance detection
by mimicking problem-solving techniques
from nature, enabling quicker and more
precise identification of hepatitis in medical
information.
In medical care, accurate and timely
diagnosis is very vital for effective treatment,

yet diagnosing diseases like hepatitis can be
difficult due to reliance on traditional, manual
methods that may result in delays and errors.
Hepatitis, in particular, poses significant
challenges because of its potential for severe
complications and the need for early
intervention. To overcome these challenges,
innovative approaches are needed to improve
diagnostic accuracy and efficiency. This
research explored the use of deep learning
(CNN) and nature-inspired algorithms (GA)
as a solution to enhance hepatitis diagnosis.
This study came up with a solution for early
hepatitis detection by combining deep
learning techniques (Convolutional Neural
Network) with nature-inspired algorithms
(Genetic Algorithm) to enhance accuracy and
efficiency. The Genetic Algorithm (GA)
integrated with the CNN in this study is a
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custom implementation designed specifically
for hyperparameter optimization. It utilizes
mechanisms like population initialization,
fitness evaluation, tournament-based selection,
two-point crossover, and flip bit mutation to
optimize critical hyperparameters.
Key innovations of this research include:
Designing and developing a GA (Genetic
Algorithm) based CNN for hepatitis detection.
Training and evaluating the model as
benchmark dataset used for hepatitis
detection.
Analyzing the impact of GA on the
performance of the proposed model.
Supporting clinical decisions in the diagnosis
of hepatitis disease.

RELATEDWORKS
In this section, we present a review of these
resourceful papers in which similar topics,
algorithms, and techniques were explored.
Based on the findings realized, here are
various studies for disease classification:
A study by Alruban et al. (2017) highlights
that gastrointestinal endoscopy aids in
detecting GI diseases, with CNNs
outperforming traditional machine learning in
feature extraction. The proposed EIAGTD-
NIADL system combines a nature-inspired
algorithm with deep learning, using bilateral
filtering for image preprocessing, ShuffleNet
for feature extraction, the ISHO algorithm for
hyperparameter tuning, and SLSTM for
classification. Experimental results show the
system's superior performance on benchmark
medical image datasets.
According to a study by Alfaer, Aljohani,
Abdel-Khalek, Alghamdi, and Mansour
(2022), The authors proposes an automated
intracerebral haemorrhage (ICH) diagnosis
model using fusion-based deep learning with
swarm intelligence algorithm. The model
consists of four major stages: preprocessing,

image segmentation, feature extraction, and
classification.
Ali Al Bataineh, Devinder Kaur, and Seyed
Mohammad J. Jalali (2022) introduced clonal
selection algorithms (CSA) for optimizing
multi-layer perceptron (MLP) neural
networks, focusing on improving
classification accuracy for tasks like breast
cancer diagnosis and wheat classification.
CSA optimizes weights and biases in MLPs
and outperforms methods like genetic
algorithms (GA), ant colony optimization
(ACO), and particle swarm optimization
(PSO). The results show CSA as a
competitive method for real-world
classification problems across various
disciplines.
Shazuli and Saravanan (2022) proposed the
GOADL-RFIGR method, combining deep
learning and content-based image retrieval
(CBIR) for retinal fundus image analysis. The
technique includes bilateral filtering for
image preprocessing, a lightweight CNN for
feature extraction, LS-SVM for classification,
and the Grasshopper Optimization Algorithm
for hyperparameter tuning. The GOADL-
RFIGR model demonstrated superior
performance on a benchmark dataset
compared to other systems.
Parhi, Bisoi, and Dash (2023) proposes an
improvised algorithm called SC-MBO-BLS,
which combines the Monarch Butterfly
Optimization (MBO) algorithm with the
Broad Learning System (BLS) for disease
classification using genomic data. The SC-
MBO-BLS model is compared with other
models such as SC-MBO-MLP, SC-MBO-
ELM, and SC-MBO-KELM, and it achieves
the highest accuracy in ten different
cancerous genomic datasets. The
effectiveness of the suggested model is
evaluated using various performance
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evaluators, including precision, MCC,
sensitivity, Kappa, F-score, and specificity.
Hipparage et al. (2023) proposed a hybrid
approach combining deep learning and
machine learning for early skin disease
detection. The method uses image processing
techniques, with SVM and CNN for diagnosis.
It involves preprocessing, feature extraction,
and machine learning-based classification to
predict skin diseases and provide medicinal
recommendations. The approach aims to
develop an automated screening system to
enhance the accuracy and speed of skin
disease diagnosis.
Renukadevi and Karunakaran (2019)
proposed a method combining a deep belief
network (DBN) with the Grasshopper
Optimization Algorithm (GOA) for liver
disease classification. Unlike previous
approaches using handcrafted features, this
method enhances image quality through
preprocessing and extracts texture, color, and
shape features. The combination of DBN and
GOA delivers superior accuracy, sensitivity,
specificity, precision, and F-1 score compared
to traditional techniques, making it a
promising approach for liver disease
classification.

MATERIALSAND METHODS
This section pinpoints the methodological
approach adopted in this research paper for
developing an early hepatitis detection model
utilizing Convolutional Neural Networks
(CNN) optimized with a Genetic Algorithm
(GA). The methodology as shown in fig. 1
includes descriptions of the data collection,
preprocessing steps, model architecture, GA
optimization process, training and evaluation
procedures, and the tools used for
implementation.

Figure 1:Workflow of the Method
Data Collection and Description
The dataset comprises clinical and
biochemical data from 568 patients
downloadable at
(https://github.com/igkishore/Hepatitis_diseas
e_detection), primarily focused on features
that are relevant to hepatitis. It serves as a
comprehensive resource and basis for
understanding and predicting the progression
of the disease.
i. Dataset Composition
Total Instances: 568 records of patient data.
Features: 20 attributes including both
predictors along with the target variable.
Target Variable: class, which is a binary
indicator of the disease state (1 = diseased, 0
= healthy).
ii.Clinical and Treatment Indicators: Sex,
Steroid, Antivirals, Fatigue, Malaise,
Anorexia, Liver_big, Liver_firm,
Spleen_palpable, Spiders, Ascites, Varices,
Histology
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iii. Dataset Characteristics
Balanced Data: The dataset is well balanced
with respect to the target variable, facilitating
reliable model training.
No Missing Values: The dataset is complete
with no missing entries, ensuring that all data
is available for analysis.
Data Types: The majority of the data are
categorical integers, with two features
(bilirubin, albumin) as continuous float values.
Data Preprocessing
The data preprocessing involves several key
steps designed to prepare the dataset for
training the Convolutional Neural Network
(CNN) model. The preprocessing pipeline
ensures that the data is appropriately and
correctly encoded, standardized, and reshaped
to meet the requirements of the CNN model.
These steps, including label encoding,
normalization, and handling missing data, are
essential for preparing the dataset, leading to
more effective and efficient model training.
Convolutional Neural Network (CNN)
Architecture
The model architecture developed for this
project is a Convolutional Neural Network
(CNN) designed to detect early-stage
hepatitis using features derived from a
structured dataset.
1. Input Layer
The input layer is the starting point of the
CNN, where the model receives the input data.
For this project, the input is a set of features
extracted from a CSV file, reshaped to meet
the requirements of the CNN. Each input
sample is represented as a 2D array (or
matrix), which is then reshaped into a 3D
tensor with dimensions (number_of_samples,
number_of_features, 1). This can be
expressed below:

����� ������ = (�, �, 1) Equation (1)
Where:
N is the number of samples.
F is the number of features in each sample.
1 represents the single channel used since the
input data is not multi-channel like RGB
images.
2. Convolutional Layers
The core of the CNN architecture consists of
convolutional layers, which are responsible
for automatically learning spatial hierarchies
of features from the input data. Each
convolutional layer applies a set of filters
(also known as kernels) to the input data,
producing feature maps that highlight
different aspects of the data. The feature map
for each convolution operation can be
represented by:

������� ��� =
� �=1

� .� �=1
� �� [�, �]. �[�, �] + � Equation (2)

Where:
X is the input data (or feature map from the
previous layer).
W represents the filter weights.
b is the bias term.
k is the size of the filter (e.g., 3x3).
σ is the activation function, typically the
Rectified Linear Unit (ReLU).
Each convolutional layer in the model is
followed by a ReLU activation function,
which introduces non-linearity into the model
and helps it learn complex patterns.
3. Pooling Layers
Pooling layers are inserted after convolutional
layers to reduce the spatial dimensions of the
feature maps, which helps in reducing the
computational complexity and preventing
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overfitting. The most common type of
pooling used in CNNs is MaxPooling, which
takes the maximum value from each window
of the feature map.
MaxPooling(p)=max({x1​ ,x2​ ,…,xn ​ })

Equation (3)
Where:
p is the pooling window size.
{x1​ ,x2 ​ ,…,xn​ } are the values within the
pooling window.
The MaxPooling operation effectively
downsamples the feature maps, retaining only
the most prominent features.
4. Flatten Layer
After the convolutional and pooling layers,
the 3D feature maps are flattened into a 1D
vector. This step is necessary to connect the
convolutional layers to the fully connected
(dense) layers. The flattening process
converts the multidimensional output into a
single vector that can be fed into the dense
layers.
5. Fully Connected (Dense) Layers
The flattened vector is passed through one or
more fully connected layers. These layers are
responsible for combining the features
learned by the convolutional layers to
perform the final classification. Each neuron
in the dense layer is connected to every
neuron in the previous layer, and the output of
each neuron is computed as:
y = σ(∑ni=1 ​ wi ​ ⋅ xi ​ + b)

Equation (4)
Where:
xi are the inputs from the previous layer.
wi ​ are the weights associated with each
input.
b is the bias term.

σ is the activation function, typically ReLU
for hidden layers and softmax for the output
layer.
6. Output Layer
The final layer in the architecture is the
output layer, which is designed for binary
classification. The output layer consists of
two neurons, each representing one of the
possible classes (hepatitis present or absent).
A softmax activation function is applied to
the output layer to convert the raw output
scores into probabilities. This can be
expressed below:

P(classi​ )=
e ​ i

z

�j=1
C ezj ​ ​ ​ Equation (5)

Where:
zi​ is the raw output score (logit) for class i.
c is the total number of classes (2 in this case).
The softmax function ensures that the output
probabilities for all classes sum to 1, allowing
the model to make a probabilistic prediction.
Genetic Algorithm (GA) for
Hyperparameter Optimization
In this research, the Genetic Algorithm (GA)
was implemented to optimize key
hyperparameters of the Convolutional Neural
Network (CNN) designed for early hepatitis
detection. The GA focused on finding the best
values for four critical hyperparameters: the
number of filters in the convolutional layer,
the kernel size, the number of dense units in
the fully connected layer, and the dropout rate.
1. Population Initialization
The Genetic Algorithm (GA) starts by
generating an initial population of candidate
CNN architectures, with each candidate
represented as a chromosome. Each
chromosome consists of genes corresponding
to specific hyperparameters:
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Number of Filters: Ranges from 32 to 128,
determining the number of Conv1D filters.
Kernel Size: Varies between 2 and 5,
controlling the portion of input data each
filter examines.
Dense Units: Ranges from 32 to 128,
specifying the number of units in the dense
layer.
Dropout Rate: Ranges from 0.2 to 0.5 to
help prevent overfitting.
Each candidate represents a unique
combination of these hyperparameters for
optimization.
2. Fitness Evaluation
For each combination, the CNN model is
constructed with the specified
hyperparameters and trained on the training
dataset. The model is then evaluated on the
validation set, and its fitness is determined
based on the validation accuracy:
This validation accuracy serves as the
measure of how effectively each combination
of hyperparameters enables the model to
generalize to unseen data.
3. Selection Process
The GA uses a tournament selection
mechanism with a tournament size of 3 to
select parent individuals for reproduction.
Candidates with higher fitness scores has a
greater chance of being selected, but the
process still allows some variability to
maintain genetic diversity in the population.
4. Crossover Operation
A two-point crossover operation is applied to
the selected parent pairs, combining their
hyperparameters to generate new offspring.
This process allows the GA to explore new
combinations of hyperparameters by blending
the genetic material of two high-performing
individuals.

5. Mutation Operation
To introduce diversity and avoid premature
convergence, the mutation operator applies a
flip bit mutation with a probability of 0.05.
This mutation randomly alters the value of
one or more hyperparameters in the offspring,
enabling the exploration of previously
unvisited regions of the hyperparameter space.
6. Evolution Over Generations
The GA iteratively evolves the population
over (x) generations (e.g 5 generations). With
each generation, the overall fitness of the
population improves as the algorithm focuses
on the most effective hyperparameter
combinations for the CNN.
7. Final Optimized Model
After the GA completes its 5 generations, the
best-performing individual, representing the
optimal combination of filters, kernel size,
dense units, and dropout rate, is selected. This
optimized CNN model is then trained on the
entire training set and evaluated on the test set,
achieving the highest validation accuracy
observed during the optimization process.
The GA optimization process is instrumental
in fine-tuning the hyperparameters of the
CNN model for early hepatitis detection. By
systematically exploring a wide range of
hyperparameter configurations, the GA
identifies an optimal set that significantly
improved the model's performance,
demonstrating the efficacy of evolutionary
algorithms in optimizing deep learning
architectures.
Training and Evaluation
The training process for the Convolutional
Neural Network (CNN) model in this project
was carefully structured to optimize
performance in early hepatitis detection. The
process included an initial training phase,
followed by hyperparameter optimization
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through a Genetic Algorithm (GA), and a
final training phase with the optimized model.
a. Data Splitting
Before training commenced, the dataset was
split into training and testing sets to evaluate
the model's performance effectively. The
dataset was initially split into 80% training
data and 20% test data. A further split of the
training data was performed to create a
validation set used during training for
monitoring the model’s performance and
triggering early stopping.
b. Initial Model Training
The initial CNN model for tabular data
included a 1D convolutional layer with ReLU
activation, max-pooling, and a dense layer for
feature extraction. A dropout layer prevented
overfitting, and softmax activation handled
binary classification. Training used the Adam
optimizer, categorical cross-entropy, and early
stopping based on validation loss.3. Genetic c.
Algorithm (GA) Optimization
A Genetic Algorithm (GA) was applied to
optimize the CNN's hyperparameters, using a
population of 10 and evolving over 5
generations. Tournament selection, two-point
crossover, and flip bit mutation explored
various hyperparameter configurations, with
validation accuracy guiding fitness scores.
The best individual from the GA was used to
build the final model.
d. Final Model Training
With the optimized hyperparameters
determined by the GA, the final CNN model
was constructed and trained on the full
training dataset. The same training procedure
was followed as in the initial phase, including
the use of the Adam optimizer and early
stopping. This ensured that the final model
was trained with the most effective
configuration for the task at hand.

e. Model Evaluation
The final model was evaluated on the test
dataset, and its performance was measured
using key metrics such as accuracy, F1-Score,
and AUC-ROC. These metrics provided a
comprehensive assessment of the model's
ability to detect early hepatitis and the results
demonstrated the effectiveness of the GA-
optimized CNN architecture.
Evaluation Metrics
The performance of the trained CNN model is
evaluated using a range of metrics to ensure
its effectiveness in detecting early hepatitis:
Accuracy: The overall proportion of correctly
classified instances.

Accuracy = ��+��
��+��+��+��

Equation (6)

Where TP = True Positives, TN = True
Negatives, FP = False Positives, FN = False
Negatives.
F1-Score: The harmonic mean of precision
and recall, providing a balanced measure of
the model’s performance.

F1-Score = 2 X ��������� � ������
��������� + ������

Equation
(7)
AUC-ROC: The AUC-ROC metric provides a
summary of the model's performance across
all classification thresholds. The ROC curve
plots the true positive rate (recall) against the
false positive rate. The AUC represents the
degree or measure of separability between the
two classes (hepatitis and non-hepatitis). A
higher AUC indicates that the model is better
at distinguishing between positive and
negative classes. The AUC-ROC is calculated
using:

AUC-ROC = 0
1� TPR(FPR) d FPR

Equation (8)
Where TPR is the true positive rate, and FPR
is the false positive rate.
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Confusion Matrix
The confusion matrix was utilized to visualize
the performance of the model. It provides
knowledge into the true positives, true
negatives, false positives, and false negatives,
which are the foundations for calculating the
aforementioned metrics.
Overall, these metrics collectively ensured
that the CNN model optimized with Genetic
Algorithm (GA) achieved a robust and
reliable performance in early hepatitis
detection.

RESULTS
This section outlines the experimental results
obtained from the implementation of the
Convolutional Neural Network (CNN)
optimized by Genetic Algorithm (GA) for
early hepatitis detection using Python,
Tensorflow/keras, Deap, Pandas, Matplotlib,
Scikit-learn, Google colab, and Jupiter
notebook.
Initial Model Training
The CNN model was first trained with default
parameters to establish a baseline
performance. Table 1 shows the details:
Table 1: Initial Training Hyperparameters

Hyperparameter Value
Learning Rate 0.001
Number of Epochs 100
Batch Size 32
Optimizer Adam
Loss Function Categorical

Cross-Entropy
Dropout Rate 0.5
Kernel Size 3
Number of Filters 64

The model training was monitored using the
validation accuracy and loss, with early
stopping criteria set to 10 epochs.

Genetic Algorithm Optimization
The Genetic Algorithm (GA) was employed
to optimize the CNN’s hyperparameters. The
Genetic Algorithm (GA) utilized a
tournament selection mechanism combined
with two-point crossover and flip-bit
mutation to search for the optimal set of
hyperparameters. Table 2 shows the details:
Table 2: GA Parameters and Optimization
Range.

GA Parameter Range/Value
Number of Filters 32 to 128
Kernel Size 2 to 5
Number of Dense Units 32 to 128
Dropout Rate 0.2 to 0.5

These optimized hyperparameters were
important in enhancing the model's
performance, making sure that the final
architecture was well-tuned for accurate early
hepatitis detection.
Training and Validation Performance
The model was trained for about 18 epochs,
with both training and validation accuracy
recorded at selected epoch. Table 3 below
shows the accuracy values across such
selected epochs:
Table3: Training and validation performances

Epoch Training
Accuracy

Validation
Accuracy

1 0.8339 0.8421
2 0.8728 0.8509
5 0.9162 0.8860
7 0.9469 0.8947
10 0.9665 0.8947
12 0.9544 0.9035
15 0.9840 0.9035
17 0.9880 0.9386
18 0.9851 0.9561

The table demonstrates a steady improvement
in both training and validation accuracy as the
model progressed through the epochs. The
table indicate that the model learned
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effectively without overfitting, as both
training and validation accuracy increased
steadily.
The training curve is seen below in fig 2.

Figure 2: Training Curve
The curve is a plot of model accuracy over
training epochs, depicting both training and
validation accuracy.
Interpretation:
Training Accuracy (Blue Line):

1. The blue line shows a consistent
improvement in training accuracy over
epochs, indicating that the model is learning
the training data well.

2. The accuracy increases steadily, eventually
reaching close to 1.0. This suggests that the
model is becoming very good at predicting
the training data.
Validation Accuracy (Orange Line):

3. The validation accuracy also improves
gradually and follows a more consistent
upward trend without many fluctuations.

4. The final validation accuracy approaches
around 0.98, which is quite high and closer to
the training accuracy.
Observations:

Close Gap Between Training and
Validation Accuracy: The gap between
training and validation accuracy is small,
especially towards the end of the training.
This suggests that the model generalizes well
and is not significantly overfitting the training
data.
Stable Validation Accuracy: The validation
accuracy curve is smoother and shows a
steady increase without significant drops or
fluctuations, indicating that the model is
learning in a stable manner.
Conclusion:
This curve suggests that the model is
performing well, with both training and
validation accuracy improving steadily. The
close alignment of training and validation
accuracy indicates that the model is
generalizing effectively to unseen data, which
is a positive outcome.
AUC-ROC Value: The Area Under the Curve
(AUC) is 0.997, which indicates an excellent
performance. An AUC of 1.0 represents a
perfect model, while an AUC close to 0.5
indicates no discriminative power. With an
AUC of 0.997, the model is almost perfect in
distinguishing between the positive and
negative classes as seen in fig 3.

Figure 3: ROC Curve
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The confusion matrix shows that the hepatitis
detection model performs very well. It
correctly identified 87 out of 87 hepatitis
cases and 24 out of 27 non-hepatitis cases.
The model has a high accuracy, with only 3
false positives (non-hepatitis cases incorrectly
labeled as hepatitis) and no false negatives
(no missed hepatitis cases). This indicates the
model is both precise and highly effective at
detecting hepatitis as seen below in fig 4.

Figure 4: Confusion Matrix
Results of the Proposed Model
After training, the optimized CNN-GA model
was evaluated on the test set. The
performance metrics are in table 4 below:

Table 4: Performance Metrics after GA
Optimization

Metric Test Set
Accuracy (%) 97.37
F1-Score (%) 98.31
AUC-ROC 0.997

Baseline Comparison
The proposed model's performance was
compared with other baseline models,
including conventional CNN, Support Vector
Machine (SVM), Random Forest (RF), and k-
Nearest Neighbors (k-NN). The comparison
results are in table 5 below:

Table 5: Baseline Comparisons
Model Accuracy F-score AUC-ROC
CNN 94.2% 93.8% 0.96
SVM 87.6% 86.7% 0.89
RF 91.5% 91.0% 0.92
k-NN 85.3% 84.5% 0.88
CNN-GA 97.37% 98.31% 0.997

The proposed CNN-GA model outperformed
the baseline models across all metrics. The
use of GA for optimizing the CNN's
hyperparameters resulted in a model that is
effective, robust and generalizable. Here is a
graphical representation in fig 5 below.

Figure 5: Graph showing Comparison of
Baseline Results
Comparison with Advanced Models
The CNN was also compared with well-
known deep learning architectures like
ResNet50 and VGG16. Table 6 shows the
details:
Table 6: Comparison with Advanced Deep
Learning Models
Model Accuracy

(%)
F1-Score
(%)

AUC-
ROC

ResNet50 94.3 93.5 0.965
VGG16 92.8 91.6 0.954
Optimized
CNN

97.37 98.31 0.997

The optimized CNN model demonstrated
superior performance, attributed to the GA-
driven hyperparameter tuning.

DISCUSSION
The GA-based CNN model for early hepatitis
detection was evaluated using accuracy,
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AUC-ROC, and validation performance.
Results showed high accuracy and a nearly
perfect AUC-ROC score, demonstrating the
model's effectiveness and controlled
overfitting. Its robust validation performance
suggests strong generalization to unseen data,
making it well-suited for real-world clinical
applications. The model successfully balances
learning and generalization, fulfilling the
project's objectives. The reason-based
analysis highlights that the Genetic Algorithm
(GA) significantly enhances the CNN model
by optimizing hyperparameters and selecting
the most relevant features. This reduces noise
and improves predictive accuracy. The GA-
CNN combination utilizes the CNN's strength
in feature extraction and the GA's
optimization efficiency, resulting in a model
that achieves high performance, reduces
overfitting, and generalizes effectively to
unseen data, making it suitable for clinical
applications.
Clinical Relevance
The GA-based CNN model developed for
early hepatitis detection has significant
clinical benefits. With a validation accuracy
almost 98% and an AUC-ROC of 0.997, the
model provides a highly reliable diagnostic
solution that can accurately differentiate
between hepatitis and non-hepatitis cases.
This accuracy reduces the risk of
misdiagnosis, leading to timely interventions,
improved patient outcomes, and more
efficient healthcare delivery. The model’s
strong generalization capability suggests it
can be effectively used across many diverse
patient populations, making it a valuable asset
in clinical practice.
CONCLUSION
This research successfully developed a
Genetic Algorithm (GA)-based Convolutional
Neural Network (CNN) model aimed at early
hepatitis detection. Through rigorous training

and validation, the model demonstrated great
exceptional performance, achieving a very
good training and validation accuracy. The
high AUC-ROC score further confirmed the
model’s ability to accurately distinguish
between hepatitis-positive and negative cases.
The results indicate that the GA-based CNN
model is not only highly accurate but also
generalizes well to new data, making it a
reliable tool for clinical applications. By
integrating this model into healthcare settings,
medical professionals can enhance their
diagnostic capabilities, enabling earlier
intervention and improved patient outcomes.
Overall, this research has made a significant
contribution to the field of medical
diagnostics, providing a powerful, enhanced,
data-driven solution for the early detection of
hepatitis. The success of this model highlights
the potential of combining genetic algorithms
with deep learning techniques to solve
complex healthcare challenges.
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