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ABSTRACT

Crude oil pollution severely impacts ecosystems, leading to biodiversity loss, water contamination,
and soil degradation. These environmental disruptions pose significant risks to human and wildlife
health while threatening long-term ecological balance. Phytoremediation, an eco-friendly and
cost-effective strategy, utilizes plants to remediate crude oil-contaminated environments. Key
mechanisms employed in this process include phytoextraction, phytovolatilization,
phytotransformation, phytostabilization, and rhizodegradation. Recent innovations in
biotechnology have further enhanced the effectiveness of phytoremediation through genetically
modified (GM) plants engineered for improved pollutant uptake, degradation, and resilience to
toxic conditions. This mini-review explores the principles, recent advancements, and potential
applications of plant-based bioremediation strategies, highlighting their critical role in addressing
crude oil pollution sustainably.
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INTRODUCTION
The global population is growing
exponentially, driving increased crude oil
production and distribution to meet rising
energy demands. Consequently, the incidence
of oil spills worldwide and their devastating
effects on humans and the environment is
alarming. Soil pollution, a critical
consequence of human activities, poses
significant threats to ecosystems and human
health (Naeem and Qazi, 2020). In Nigeria,
many locations are contaminated with
petroleum hydrocarbons (PHCs)—organic and
inorganic compounds derived from crude oil.
During oil exploration and industrial activities,
these hydrocarbons are released into the
environment and undergo chemical, physical,
biological, and physicochemical interactions,
spreading extensively (Truskewycz et al.,
2019). The transformation processes alter the
exposure, composition, and toxicity of these

pollutants, further compounding their
hazardous nature. PHCs are highly toxic and
associated with carcinogenic, mutagenic, and
teratogenic effects on living organisms (Yap et
al., 2021).
Oil spillage remains a persistent challenge in
Nigeria's oil-producing states, creating
significant environmental management
problems (Akindipe et al., 2023). Spilled
crude oil and refined petroleum products, such
as fuels and lubricants, contain toxic
hydrocarbons, nitrogen-oxygen compounds,
sulfur compounds, and heavy metals. These
pollutants can cause acute and chronic harm to
flora and fauna (Pal and Sen, 2024).
Conventional remediation methods, including
physical, thermal, chemical, and biological
processes, are often limited by complexity,
high costs, and potential for additional
environmental damage (Tirumala et al., 2021).
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Phytoremediation has emerged as an integral
component of bioremediation, utilizing plants
to remove, contain, or transform contaminants
in the environment. Certain plant species can
thrive in polluted soils, extracting or degrading
pollutants either independently or in
association with microorganisms (Rotami and
Azharpoor, 2019). Moreover, recent
advancements in biotechnology have led to the
development of genetically modified (GM)
plants with enhanced capacities for pollutant
uptake, degradation, and resilience in
contaminated environments. These GM plants
offer new possibilities for overcoming the
limitations of conventional phytoremediation,
making cleanup efforts more efficient and
targeted.
Given the harmful impacts of crude oil
pollution and the limitations of existing
remediation methods, this study discusses the
significance of phytoremediation, including
the use of genetically modified plants, as a
sustainable and effective solution for reducing
crude oil pollution in the environment.
In this mini review, the authors performed an
in-depth analysis of relevant literature sourced
from Google Scholar, ResearchGate, and other
online publications. By synthesizing
information from various disciplines and
cross-referencing multiple studies, they
provide a comprehensive overview of the
advantages, challenges, and practical
applications of phytoremediation. The review
also explores innovative technologies and real-
world case studies, showcasing the potential of
phytoremediation as an effective solution for
mitigating crude oil pollution.
IMPACTS OF CRUDE OIL SPILLAGE

ON THE ENVIRONMENT
Crude oil spillage has a vast negative impact
on both the water and soil of the ecosystem.
The life of aquatic and other valuable
resources in lakes, rivers, and wetlands are

threatened by oil spillage, such undesirable
effects may cause toxicities in animals and
other humans, including abnormal neuron
development, genetic damage, physical
deformities, as well as changes in biological
activities such as feeding, reproduction, and
migration (Bashir et al., 2020). Some animals
are greatly affected by as little as 10 ml of oil
slick, such as seabirds that suffer damage to
their feather microstructure, which leads to
lethally reduced thermoregulation (Tekeshita
et al., 2021). The aquatic oil spill has been
reported by many researchers to have an
indirect effect on human health, consumption
of food contaminated with hydrocarbon
compounds in their tissues, and may result in
bioaccumulation of contaminants along with
their subsequent transfer through the food
chain. Terrestrial and aquatic plants are
exposed to both chemical and physical damage
through oil spillage, lowering of carbon
dioxide and temperature regulation due to
fouling of plant leaves and the coating of plant
roots, disrupting water and nutrient uptake by
the plant roots (Kochhar and Gujral, 2020).
The release of hydrocarbons leads to the
inhibition of seed germination, a decrease in
plant biomass production, and increased plant
mortality. The soil's physical, biological, and
chemical attributes are also negatively affected
by oil spillage when the oil penetrates macro
and micropores of the soil and thereby limiting
water and air transport, which is highly
essential for organic matter conversion (Kuhn
et al., 2022).
The different heavy metals emit toxic
substances, which have effects on human
health and the environment. Environmental
pollution by heavy metals has increased due to
industrial development, and it is observed that
many heavy metals are in higher concentration
in those industrial areas. Heavy metals cannot
be destroyed by degradation; as such, they
have become a primary concern for
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environmental pollution. The remediation
process of contaminated soils, groundwater,
and surface water by heavy metals needs some
methods to remove the metals from
contaminated areas. Various methods have
been used for removing pollutants from a
contaminated environment. Soils that are
contaminated with heavy metals can be treated
by acid leaching, soil washing, physical or
mechanical separation of the contaminant,
electro-chemical treatment, electrokinetics,
chemical treatment, thermal separation, and
biochemical processes. These remediation
techniques are costly, they take longer time,
cause logistical problems, and have resulted in
so much technical complexity. Therefore, an
alternative solution is needed for heavy metal
removal from the environment.
PHYTOREMEDIATION OF OIL
SPILLAGE
Phytoremediation refers to the use of plants to
reduce the concentrations of contaminants in
the environment. It is a bioremediation
technique that uses plants to clean up
contaminated soil and water.
Phytoremediation is a cost-effective, efficient,
and environment-friendly technology that uses
metal-accumulating plants to remove toxic
metals, including radionuclides, as well as
organic pollutants from contaminated soils and
water (Ali et al., 2013). Phytoremediation is a
sustainable and green process in which live
plants are used for the clean-up of
contaminants from the environment, making
the environment non-toxic for human health
and for plant growth.

PHYTOREMEDIATION AND ITS
MECHANISMS
Phytoremediation consists of the Greek prefix
‘phyto’ which means ‘plant’ and the Latin root
‘medium’ which means ‘to correct or remove
evil’. Many definitions of phytoremediation
have been given by researchers. According to
these definitions, (Khan et al., 2022) made a
general definition of phytoremediation as an
emerging technology using selected plants to
clean up the contaminated environment from
hazardous contaminants to improve the
environment quality. EPA (2000) noted that
phytoremediation has been receiving attention
lately as an innovative, cost-effective
alternative to the more established treatment
methods used at hazardous waste sites. Ali et
al. (2020) called phytoremediation a ‘green
technology’ because of its advantages as a cost
effective, efficient, environment- and eco-
friendly technology.
Phytotransformation
Phytotransformation and phytodegradation,
which are different terms used for the same
process, describe the metabolic reaction within
the plant tissue. Organic and inorganic
(atmospheric nitrogen and sulfur oxides)
contaminants are either degraded/ transformed
internally via metabolic processes or
externally via extracellular enzymes (Kumari
and Das, 2023). Phytotransformation
processes include root-to-stem and leaf uptake
and diffusion for transformation (Hussein et al.
2022). The phytotransformation mechanism
has been proven to remediate multiple
contaminants in soil and water, including
petroleum hydrocarbons, pharmaceutical
residuals, insecticides, pesticides, and
surfactants (Kristanti et al., 2023).
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Figure 1: Diagram showing phytotransformation (phytodegradation) (Source: Tomar et al., 2020).
Phytostabilization
Phytostabilization involves the absorption and
precipitation of pollutants such as organic
compounds and heavy metals found in roots.
The use of certain plant species to absorb and
precipitate contaminants, generally metals,
reduces their availabIlity, and in turn reduces
their potential of contaminants to human
exposure (Masindi and Muedi, 2018). This
technique can be used to re-establish a
vegetative cover at sites where natural
vegetation is lacking due to high metal
concentrations in surface soils. The linkage
between plant metabolic process and soil
physiochemical processes which is critical for
nutrient flow from soil to plant aid in the
precipitation and the reduction of movement
of soil contaminants, preventing the pollution
of other ecosystem compartments such as
groundwater, bulk soil, and the food chain.
Efficient uptake and accumulation of
petroleum hydrocarbons by plants through
phytostabilization might be used to prevent
contaminants from migrating through erosion,
leaching, and dispersion. This also helps

incorporate organic pollutants into humic
materials, which involves binding
contaminants to the soil organic matter by
plant enzymes or increasing soil organic
matter content due to humification.
Phytovolatilization is the process by which
plants or their associated microbes volatilize
contaminants. This is followed by their
translocation to stomata and, sometimes, to the
bark and stem tissues to be released into the
atmosphere (Limmer and Burken, 2016). This
can occur in two ways, direct and indirect, In
the presence of hydroxyl radicals, volatilized
substances in the atmosphere might be
damaged or oxidized. Examples of uses of
phytovolatilization include volatilization of
trichloroethylene by poplar trees, methyl
tertiary butyl ether (MTBE) by weeping
willows, and selenium by Indian mustard
(Grzegorska et al., 2020). Although this
process has sparked concerns because of the
risk of air pollution, it is not the primary
dissipation pathway for most contaminants
(Limmer and Burken, 2016).
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Figure 2: Diagram showing phytostabiloization process. Adapted from Wang and Chen,
2024)Phytovolatization.

Figure 3: Diagram showing phytovolatization process. Adapted from Khanna et al., (2022).
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Evapotranspiration
The process of evapotranspiration is a type of
containment that uses the vaporization of
water to control groundwater hydraulics. In
arid and semi-arid locations,
evapotranspiration by natural vegetation is
effective, but it might also occur in different
regions if climate and other conditions are
taken into consideration (Kumar, 2023).
Phreatophyte trees, such as poplar, eucalyptus,
and river cedar, are examples of plants that
take this approach, with deep roots that can
transpire 200–1100 litres of water every day
(James, 2022). Ogundola et al (2022) tested
phytoremediation as a technology for
environmental protection and for preventing
the streaming of pollutants into hydrological
systems and that the most effective plants for
phytostabilization included Alfalfa, Salix, and
Poplar species. They recommended that
biomass taken from petroleum oil-
contaminated sites should be composted or
burned, whereas biomass taken from a mixture
of contaminants (such as oil products and
heavy metals) should be dried and transferred
to a waste incineration facility.
Study by Elbasi (2021) shows that inoculating
yellow lupine with the engineered
endophyteBurkholderiacepacia resulted in
improved phytoremediation potential of
volatile organic pollutants and toxic metals
from contaminated soils and groundwater by
different mechanisms, including
evapotranspiration. Because of the decreased
enzyme activity involved in antioxidant
defence in the roots, the experiment resulted in
lower Ni and trichloroethylene (TCE)
phytotoxicity. The success of
phytoremediation in capturing the polluted
water was directly proportional to the aquifer’s
horizontal conductivity, saturated thickness,
and groundwater gradient. An important field
of phytoremediation is remediating landfill
leachate in municipal landfill sites. The water

that has percolated through a solid and leached
out some of the constituents is generated by
the decomposition of landfilled organic waste
and precipitation percolating through the
waste material, which has to be treated before
its exposure to the environment. Studies by
Kumarathiliaka et al., (2017) proved that
willow plantations established on the restored
cap of landfills can decrease leachate
formation due to high evapotranspiration,
whereas nutrients from the leachate can be
taken up by willows or retained in the soil–
plant system.
Phytoaccumulation
Also known as phytoextraction or
phytomining, this refers to the removal or
uptake of pollutants from the contaminated
matrices and their translocation into the
harvestable organs of plants (Suman et al.,
2018). This mechanism requires concentration
or accumulation rather than breakdown, this
strategy involves a plant- extracting inorganic
pollutants from soil and water and
translocating them to the plant shoots,
followed by plant harvest for disposal or
recycling. The process of uptake could be
comparable to that of metals or nutrients
necessary as co-factors for enzyme activity,
for instance after intake, they are retained in
vacuoles and to protect the plant from their
damaging effects. Owing to their poor biomass
formation, most hyperaccumulator plants are
unsuitable for phytoremediation methods
(Grzegórska et al., 2020).
The rhizosphere activity, microbial biomass,
and metabolism are all influenced by plant
biomass production, particularly in the root
system (Xiong et al., 2021). The efficacy of
accumulation is another key parameter in the
selection of a good candidate for
phytoremediation. Water plants, microalgae,
root filters, and immobilized bacteria are all
good alternatives for contaminated water (Yan
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et al., 2020). The phytoremediation of
radionuclides has become increasingly
important because of their long half-life and
their possible entrance into the food web after
their accumulation in water and soil. There is a
wide range of plant species that can remediate
radionuclides with efficient phytoextraction
potential (Yan et al., 2021).
Advantages and Disadvantages of
Phytoremediation
Advantages

1. Eco-Friendly and Cost-Effective:
Phytoremediation is considered an
environmentally friendly and cost-effective
method for remediation of contaminated sites.
According to Ali et al. (2020), it leverages the
natural processes of plants to extract, sequester,
and detoxify pollutants, making it a
sustainable alternative to more invasive and
expensive remediation techniques.

2. Cleanup of Organic Pollutants: This method
is particularly effective in cleaning up organic
pollutants such as petroleum hydrocarbons,
pesticides, and industrial solvents. Plants such
as poplar trees and grasses have been shown to
absorb and break down these substances,
thereby reducing environmental and health
risks associated with contaminated soil and
water (Gavrilescu, 2021) .

3. Improvement of Soil Conditions and
Erosion Prevention: Phytoremediation not
only removes pollutants but also improves soil
structure and fertility. By stabilizing the soil
with plant roots, it helps prevent erosion and
promotes a healthier ecosystem. This dual
benefit enhances the long-term sustainability
of the remediated area (Garg and Paliwal,
2020).
Disadvantages

1. Ineffectiveness in Low Temperatures: One
of the limitations of phytoremediation is its
reduced effectiveness in low-temperature

environments. Plant growth tends to slow
down in colder climates, which can impede the
uptake and metabolism of contaminants. This
makes the process less reliable in temperate
regions (Pi et al., 2021).

2. Air Contamination Risks: Another
significant disadvantage is the potential for air
contamination. If plants used in
phytoremediation are burned, the
contaminants absorbed by the plants could be
released into the atmosphere, posing a risk to
air quality and public health (Agarwal et al,
2019).
INNOVATIVE TECHNOLOGIES FOR
IMPROVING PHYTOREMEDIATION

1. Nanoparticles assisted phytoremediation
The inclusion of nanoparticles (NPs) is a novel
and inventive technique to improve the
removal efficiency of heavy metals (Zhu et al.,
2019). Therefore, these particles have the
ability to enhance phytoremediation through a
variety of methods, such as: (a) interacting
with heavy metals (HMs) by adsorption or
redox processes, (b) inducing growth in plants,
or (c) aiding in the phytoremediation of HMs
(Song 2019). Through electrostatic adsorption,
the chemical interaction demonstrated that
nanoparticles can assist plants in stabilising
heavy metals. NPs can stimulate plant
development through rhizospheric bacteria and
fungi. Numerous studies have shown how
useful nanoparticles are for boosting
phytoremediation.
In this regard, Khan and Bano (2016) observed
that the combination of Ag nanoparticles
(AgNPs) with plant growth-promoting
rhizobacteria (PGPR) regulated the growth
and phytoextraction potential of maize plants.
It has been observed that adding nano-TiO2
particles to Cd-polluted soil can improve the
removal capability of Cd in soybean plants
(Glycine max) (Singh and Lee 2016). Salicylic
acid nanoparticles (SANPs) added
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exogenously at an early stage of growth can
enhance As phytoremediation using Isatis
cappadocica (Souri et al., 2017). Hussain et al.
(2019) discovered that when magnesium oxide
(MgO) nanoparticles and thidiazuron (TDZ)
growth regulator are applied to radish
(Raphanus sativus), the plant shows improved
Pb accumulation and antioxidative response.

2. Phytohormone assisted phytoremediation
The process of phytoremediation with the
assistance of plant growth regulators (PGRs)
may enhance the accumulation of heavy
metals (HMs) in plant tissues. There are four
main types of plant hormones that have been
found to be useful for this technique:
gibberellins, auxins (IAA), cytokinins, and
abscisic acid (ABA). Numerous studies have
demonstrated that these phytohormones
favourably affect the level of HM
accumulation as well as plant growth and
tolerance to HMs. It is commonly recognised
that plants can avoid toxicity when exposed to
heavy metals (HMs) by receiving exogenous
phytohormone additions during the early
stages of growth. One interesting method to
increase Arabidopsis thaliana's resistance to
Cd with only moderate effects is the addition
of 0.05 M auxin (Chen et al.,
2024).Exogenous administration of 10 and 100
mM IAA in nutritional solution reduces the
harmful effects of Trigonella foenum-graecum
under Cd stress by blocking Cd absorption and
controlling the ascorbate-glutathione cycle
(Bashri and Prasad, 2016). According to Ji et
al., 2015, applying gibberellic acid 3 (GA3) at
concentrations of 10, 100, and 1000 mgL−1
can greatly boost Solanum nigrum's biomass
and phytoremediation effectiveness.

3. Microbial assisted phytoremediation
Utilising plant growth-promoting bacteria
(PGPB), which can infiltrate the rhizospheric
system and promote plant growth and mineral
nutrition, is a key component of

bioremediation. These microorganisms may
break down hazardous substances or change
them into less dangerous forms (Ullah et al.,
2015). It has been found that a number of
PGPB increase plants' ability to absorb HMs
through phytoremediation. By secreting
various compounds including organic acids
and siderophores (chelators), which lower the
pH of the soil and increase the bioavailability
of HMs, these bacteria are essential to the
detoxification of heavy metals (Chen et al.,
2017).It has been documented that other
bacteria release polymeric substances
including glomalin and polysaccharides,
which lessen the mobility of HMs and aid in
their phytostabilization (Gujre et al., 2021).
Certain PGPR are essential to the
phytoremediation processes because they can
boost plant detoxification rates, increase root
secretion of enzymes that speed up pollutant
destruction, or modify the pH of the soil,
among other methods (Liu et al., 2020). For
instance, in soils contaminated with U and Pb,
three bacterial endophytes—Pantoea stewartii
ASI11, Enterobacter sp. HU38, and
Microbacterium arborescens HU33—increase
phytostabilization of Leptochloa fusca plants
(Ahsan et al., 2017).
GENETICALLY MODIFIED PLANTS

FOR PHYTOREMEDIATION
Genetically engineered plants are used as a
promising tool for improving
phytoremediation abilities. Although
phytoremediation is considered ecologically
and economically friendly, it has some
limitations, including a low removal rate and
inadequate tolerance of a plant to the
pollutants (Ozyigit et al., 2020). Developing
transgenic plants with improved
phytoremediation abilities should provide a
solution to overcome the weakness of
conventional plants that are used to remediate
environmental pollutants (Gunarathne et al.,
2019). Genetically engineered plants for



DOI: 10.56892/bima.v8i4B.1208

Bima Journal of Science and Technology, Vol. 8(4B) Jan, 2025 ISSN: 2536-6041

318

phytoremediation purposes were first
developed to enhance the tolerance of toxic
metals (Aken, 2008). The phytoremediation of
toxic metals can be improved by overcoming
the limitations of producing low plant biomass
and the limited efficiency of particular plant
species for phytoremediation (Suman et al.,
2018). The genes that are involved in the
translocation, detoxification, acquisition, and
sequestration of heavy metals have been
identified in different organisms, including
higher plant species, bacteria, and yeast. These
genes can be transferred and over-expressed in
plants that have phytoremediation potential.
The produced transgenic plants can
overexpress proteins that are important in
pollutant assimilation and chelation, as well as
membrane transport (Yang et al., 2022).
The remediation process of organic pollutants
can be improved by enhancing several
mechanisms included in in-planta and ex-
planta processes in the phytoremediation
environment. The uptake of the organic
pollutants and their subsequent diffusion to the
plant organs, sorption and sequestration,
or/and transformation are included as the in-
planta processes, while the ex-planta processes
include the degradation that occurs via the
rhizospheres’ microbial activity or the protein
and co-factor excretion that results in non-
specific activity (Hussain, et al., 2022). The
plants developed for organic pollution
phytoremediation were modified to remediate
halogenated and explosive pollutants.
Currently, a wide variety of applications exist
for transgenic plants in organic pollution
phytoremediation, such as pesticides,
explosives, organic hydrocarbons, phenolics,
and organic solvents (Azab et al., 2018). The
transgenes present in these plants are
responsible for enhancing plant tolerance to
pollutants or increasing metabolic activity
under pollution stress (Mishra et al., 2020).
The genetic manipulation of enzymes involved

in phase I and phase II of xenobiotic
metabolism is considered an important
approach to enhancing the phytoremediation
of organic pollutants. Cytochrome P450, as
well as glutathione-S-transferase, are good
enhancers of organic contaminants in
phytoremediation. Other approaches target
specific types of pollutants, such as the
manipulation of laccases and peroxidases, to
remediate phenolic compounds and
nitroreductase or pentaerythritol tetranitrate
reductase for the removal of TNT (Hussain et
al., 2018).
The expression of the human P450-1A2 gene
enhanced plant tolerance and detoxification to
the herbicide chlortolunon, and simazine in
the transgenic Arabidopsis thaliana (Kebeish
et al., 2014; Azab et al., 2016, 2018).
Tolerance towards chlortoluron and
isoproturon was reported by using ginseng-
derived CYP736A12 and CYP76C1 genes that
are overexpressed in Arabidopsis thaliana
(Hofer et al., 2014; Khanom et al., 2019).
Other studies (Buono et al., 2020; Mishra et
al., 2020) reported the enhancement of
herbicide tolerance and metabolism in
different plant species using cytochrome p450
transgenes. Plants and associated
microorganisms in bioremediation Recent
advancements in bioremediation technology
and understanding have introduced the use of
plants along with microbes for the remediation
of petroleum hydrocarbons and other organic
contaminants. This can be termed
bioaugmentation-assisted phytoremediation
(BAP) (Auti et al., 2019).
The interactions of microbes with plant
systems, both above ground and in the soil, are
important for plant productivity and growth in
natural ecosystems and agriculture. These
interactions are significant for determining the
organic pollutants’ fate in the plant-soil system.
The synergetic effect between the microbes in
the rhizosphere and plants can notably
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increase the success of the remediation of
petroleum hydrocarbons in the soil.
Rhizosphere bacteria are known to be a
heterogeneous group of bacteria associated
with a root and on the surface of the roots that
improve the quality and extent of plant growth
in a direct or/and indirect way. It was reported
by Dzionek et al. (2016) that the degradative
potential of microbes found in the rhizosphere
may be increased by plants in several ways,
such as increases in PHC-degrading microbes,
the densities of microbial population, the
expression of catabolic genes, catabolic genes
horizontal transfer, and enhancement of
hydrophobic hydrocarbon bioavailability.
Plants that secrete organic compounds can
induce microbes to degrade PHC by different
mechanisms, including efficient
microorganism attachment on the plant surface,
polluted soil aeration, and the availability of
organic pollutants and nutrients transport, even
though it was reported that plants rarely have
the potential for effective bioremediation of
PHC-polluted soils (Gkorezis et al.,
2016).Some petroleum hydrocarbon-degrading
microbes associated with plant use, also
known as plant growth-promoting
rhizobacteria (PGPR), have several advantages,
including the ability to invert transformation
and reduce residual pollutant risks.
The plant–microbial system offers higher
remediation efficiency than phytoremediation
only. During bioremediation that combined
biostimulation and phytoremediation
mechanisms, the organic compounds secreted
from plant roots enhanced microbial activity
and PHCdegrading microbes; subsequently,
the microbial mineralization of organic
pollutants in contaminated soils was enhanced
(Siles et al., 2018). Plant roots, which are
involved in water and nutrient uptake and
anchorage, are biochemical units that regulate
numerousplant–soil interactions, including
mutualistic relationships with beneficial

endogenous microbes such as mycorrhizae,
rhizobia, endophytes, and PGPR. Plant
exudation is the primary influence that affects
PHC degradation in the rhizosphere. Various
compounds are exuded by plant roots into the
rhizosphere, such as organic acids, phenolics,
amino acids, and sugars (Yang et al., 2023).
Plant roots secrete biochemical compounds
that are divided into two categories based on
their molecular weight: Low-molecular-weight
compounds such as phenolics, amino acids,
monosaccharides, and aromatic and aliphatic
compounds; and high-molecular-weight
compounds such as proteins and
polysaccharides (Kumar and Goel, 2019).
Plant roots secrete organic acids, such as the
intermediates of the citric acid cycle, including
malonic, citric, oxalic, fumaric, malic, and
succinic acids; these are involved in various
processes such as PHC microbial degradation
in the soil. The secreted organic acids change
the rhizosphere’s chemical composition, and
as a result, the bioavailability of organic
pollutants in soils is changed (Ni et al., 2020).
This process is either enhanced directly by
changing the soil conditions, including the
characteristics of the soil surface and the soil
pH, or indirectly by promoting the indigenous
PHC-degrading microbial communities. Some
soil microbes can mineralize root exudates
while being used as growth substrates, which
can further act as cometabolites for the
persistent PHC contaminant degradation
(Correa-García et al., 2018).
Several studies have demonstrated the
potential of certain microbes and plant
combinations for the enhancement of the PHC
biodegradation process. The inoculation of
PGPR in combination with arbuscular
mycorrhizal fungi (AMF) in soil contaminated
with petroleum hydrocarbons and planted with
Avena sativa increased plant dry weight and
stem height compared to uncontaminated soil.
This combination increased the plant’s
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tolerance to crude oil pollution by augmenting
the activities of enzymes and decreasing the
level of MDA. Further, they contributed to
improving the soil quality by increasing the
activities of the soil enzymes urease,
dehydrogenase, and sucrase (Xun et al., 2015).
Similarly, Das and Kumar (2016) found that
seeds of Withaniasomnifera primed with
biosurfactant produced PGPR Pseudomonas sp.
AJ15 produced plants characterized by high
values of shoot and root length, carotenoids
and chlorophyll pigments, and germination
percentage under various levels of crude oil
contamination compared to non-primed seeds.

CONCLUSION
Phytoremediation is an environmentally
sustainable and cost-effective technology for
addressing the challenges posed by crude oil
pollution. This review has highlighted its
potential as a green alternative to conventional
remediation methods, such as thermal,
mechanical, and chemical techniques, which
are often expensive, energy-intensive, and
harmful to ecosystems. By leveraging the
natural abilities of plants to extract, degrade,
stabilize, and volatilize contaminants,
phytoremediation offers a non-invasive, in situ
approach that not only cleans up oil-polluted
environments but also improves soil quality
and prevents erosion. Despite its numerous
advantages, phytoremediation has limitations,
including reduced effectiveness in low-
temperature environments and the need for
significant land areas. Furthermore, its
efficiency depends on factors such as plant
species selection, site characteristics, and the
extent of contamination. As a result, further
research is necessary to optimize
phytoremediation strategies, address its
limitations, and evaluate potential risks. By
doing so, this eco-friendly technology can
become a more reliable and effective solution
for mitigating crude oil pollution in diverse
environmental contexts.
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