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ABSTRACT

The issue of low birth weight (LBW) is a critical concern due to its significant impact on
newborn health and development, affecting both immediate and long-term outcomes. This
study employs Generalized Linear Models (GLM) to investigate the factors contributing to
LBW, utilizing a comprehensive dataset of 2164 birth records from selected Primary Health
Care centers in Gombe metropolis, Gombe State. The analysis highlights that maternal age
and parity are key determinants of birth weight, with the interaction between these variables
proving to be a substantial factor. Specifically, our results indicate that maternal age and the
number of previous births significantly influence birth weight, while the effect of the baby's
gender is relatively minor. We evaluated the performance of eight different models through
deviance analysis, demonstrating that the optimal model incorporates both maternal age,
parity, and their interaction. These findings emphasize the importance of considering both
maternal age and parity in predicting birth weight. Although the study provides valuable
insights, it also has limitations that suggest the need for further research to explore additional
influencing factors and refine current models. Addressing these limitations could enhance
strategies for improving newborn health outcomes.

Keywords: Low Birth Weight, Infant Health, Generalized Linear Models, Maternal Age,
Parity, Birth Weight Determinants

INTRODUCTION Several biological and socioeconomic
factors contribute to birth weight. Key
determinants include maternal factors such
as age, nutritional status, pre-pregnancy
weight, and height, as well as gestational age
and the infant's sex (Papageorghiou et al.,
2019). The interaction between these factors,
particularly in settings with limited
healthcare infrastructure, makes it essential
to understand how they collectively

Birth weight is a critical measure of neonatal
health and a strong predictor of infant
survival, growth, and development. Defined
as the weight of a newborn immediately
after birth, birth weight has profound
implications for public health, particularly in
low-resource settings like rural Nigeria,
where healthcare access and outcomes can
be markedly different from urban areas . ) .
(Faychun & Omololu, 2020). Low birth influence birth outcomes. Studies have

; . . hown that younger and older maternal ages
weight (LBW), typically defined as a weight 5 . . : .
of less than 2,500 grams, is associated with are associated with higher risks of LBW,

increased risks of neonatal mortality and whil§ factors SUCh. as parity (the n}lmber of
long-term health complications, including = Previous pregnancies) also play a significant

. . role (Risnes et al., 2020; Lawn et al., 2020).
developmental delays and chronic conditions
later in life (Gordis, 2021; Blencowe et al., In Nigeria, where healthcare disparities are
2019). pronounced between urban and rural areas,
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the impact of birth weight on child
development is particularly critical. Infants
with low birth weight are more likely to
experience delays in cognitive and physical
development, which can affect their
educational outcomes and long-term
socioeconomic status (Olusanya & Ofovwe,
2019). The relationship between birth weight
and educational performance is complex and
may be influenced by a range of
confounding factors, including maternal
education, socioeconomic status, and access
to healthcare (Victora et al., 2021).
Understanding these relationships is crucial
for developing targeted interventions that
can improve maternal and neonatal health
outcomes.

Birth weight, the weight of a fetus or
newborn measured immediately after birth,
is a critical indicator of neonatal health. It is
essential to measure birth weight within the
first hour of life, especially for live births, to
avoid the effects of postnatal weight loss and
to provide an accurate assessment of the
newborn's health status (Lawn et al., 2020).
This early assessment is one of the primary
tasks performed when a baby is born, as it
offers vital insights into the infant's overall
health, guiding healthcare professionals in
their initial evaluations.

The variability in birth weight among
newborns is common and serves as a key
indicator of their health status. Low birth
weight (LBW), as defined by the World
Health Organization (WHO), refers to a birth

weight of less than 2,500 grams (5.5 pounds).

This threshold is based on epidemiological
evidence showing that infants weighing
below this level are about 20 times more
likely to face increased risks of mortality
compared to those with higher birth weights
(World Health Organization, 2019). The
incidence of LBW is notably higher in
developing countries, where it contributes to
a range of adverse health outcomes,
including higher neonatal mortality rates and
long-term developmental challenges
(Blencowe et al., 2019).
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Prakesh and K. S. Group (2010) conducted a
systematic review and meta-analysis
revealing that higher maternal parity is
associated with increased risks of low birth

weight (LBW) and preterm  birth,
underscoring the need for targeted
interventions in high-parity pregnancies.

Huy Duc Vu, Dickinson, and Kandasamy
(2018)  highlighted  significant  sex
differences in mortality rates among LBW
and premature neonates, with male infants
experiencing higher mortality, suggesting
the need for sex-specific neonatal care
strategies. Yassir et al. (2016) identified
passive smoking as a significant risk factor
for LBW, alongside other socioeconomic
and maternal health factors, emphasizing the
importance of reducing smoking exposure to
improve neonatal outcomes. Together, these
studies enhance our understanding of the
diverse risk factors influencing LBW and
inform strategies for improving maternal and
neonatal health.

The global health community has long
recognized the importance of addressing
LBW. One of the major objectives outlined
in "A World Fit for Children," the
Declaration and Plan of Action adopted at
the United Nations General Assembly
Special Session on Children in 2002, was to
reduce the incidence of low birth weight by
at least one third between 2000 and 2010
(United Nations Children’s Fund [UNICEF],
2020). This initiative highlights the critical
role of LBW as a global health priority and
underscores the need for collective efforts to
improve the well-being of newborns and
infants worldwide.

Causes and Consequences of Low Birth
Weight

Low birth weight in infants can result from
either preterm birth (before 37 weeks of
gestation) or restricted fetal (intrauterine)
growth. LBW is intricately linked to
increased risks of fetal and neonatal
mortality and morbidity, impaired growth,
cognitive developmental challenges, and a



higher likelihood of chronic diseases in
adulthood (Risnes et al., 2020). Several
factors influence the duration of gestation
and fetal growth, ultimately determining
birth weight. These include a combination of
infant, maternal, and environmental factors
that collectively shape the infant's birth
weight and future health outcomes.

(1) Gender Differences: Gender plays a
significant role in birth weight, with girls
typically weighing less than boys at the same
gestational age (Papageorghiou et al., 2019).
Additionally, firstborn infants often have
lower birth weights compared to their
subsequent siblings, and twins generally
weigh less than singletons (Goldenberg et al.,
2019).

(i) Maternal Factors: A mother's own fetal
growth, nutritional status from birth through
pregnancy, and body composition at the time
of conception significantly impact birth
weight (Christian et al.,, 2019). Various
maternal factors, such as maternal stature,
residence at high altitudes, and maternal age,
can also contribute to smaller babies
(Victora et al., 2021). Moreover, maternal
nutrition, lifestyle choices (e.g., alcohol,
tobacco, or drug use), and exposure to
infections (e.g., malaria, HIV, or syphilis)
during pregnancy influence fetal growth,
development, and pregnancy duration (Lawn
et al., 2020).

(111) Socioeconomic Conditions:
Socioeconomic conditions play a pivotal role
in birth weight outcomes. Mothers living in
deprived circumstances are more likely to
give birth to LBW infants, primarily due to
sustained poor nutrition, health conditions
during pregnancy, and the high prevalence
of infections, often exacerbated by poverty
(Olusanya et al., 2020).

(iv) Long-term Consequences: LBW due to
restricted fetal growth has lifelong
implications, including poor childhood
growth and an increased risk of adult
diseases such as type 2 diabetes,
hypertension, and cardiovascular disease
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(Barker et al., 2020). Additionally, girls born
with LBW face an elevated risk of giving
birth to smaller babies when they become
mothers, perpetuating a cycle of adverse
health outcomes across generations (Lawn et
al., 2020). These complex interrelationships
underscore the importance of comprehensive
maternal and infant care to mitigate the
adverse effects of LBW and improve long-
term health outcomes.

Prevention of Low Birth Weight

Preventing LBW is essential to improving
neonatal health outcomes. Newborns with a
birth weight below 5.5 pounds (2.5 kg) are
classified as having LBW, a condition that
can arise from premature birth, insufficient
fetal growth, or a combination of both
factors. Although relatively rare, extremely
low birth weight infants are at a significantly
increased risk of encountering health issues
(Blencowe et al., 2019). To promote a
healthy pregnancy and a healthy baby,
adopting proper dietary habits, engaging in
regular  exercise, avoiding unhealthy
behaviors, and effectively managing existing
health conditions are imperative.

Effective Preventive Measures

(i) Preparation for Pregnancy: Optimizing
health and lifestyle choices before
conception is crucial (Gordis, 2021).

(i) Access to Prenatal Care: Ensuring
access to prenatal care is paramount for
monitoring the health of both the mother and
the developing fetus (Papageorghiou et al.,
2019).

Gestational age, calculated from the onset of
the woman's last menstrual period (LMP) or
through more precise methods, is a critical
measure in pregnancy (McCullagh & Nelder,
2019). The genetic makeup of a baby,
influenced by both parents, can impact birth
weight. For instance, a mother's height and
weight can influence her baby's birth weight,
with some infants inheriting more
characteristics from one parent than the
other (Agresti, 2019).



Gestational age, expressed in completed
weeks, is of significant importance to
obstetricians in managing pregnancy and
neonatologists in  evaluating infants
(Venables & Ripley, 2020). It aids in

identifying high-risk infants, predicting
potential  complications, and  guiding
treatment  decisions.  Additionally, the

combination of gestational age and birth
weight classification assists neonatologists
in  categorizing infants, formulating
appropriate treatment plans, and assessing
the risks associated with morbidity and
mortality (McCullagh & Nelder, 2019).

This study aims to investigate the
determinants of low birth weight in Gombe
State, Nigeria, using Generalized Linear
Models (GLM). By analyzing data from
2,164 birth records collected from Primary
Health Care centers in Gombe metropolis,
this research seeks to identify the key factors
that influence birth weight, with a particular
focus on maternal age, parity, and their
interaction. The findings will provide
valuable insights for public health
practitioners, policymakers, and researchers,
offering evidence-based recommendations to
improve neonatal outcomes in Nigeria's rural
regions.

The results of this study are expected to have
significant implications for public hospitals
and health institutions across Nigeria. By
identifying the factors most closely
associated with low birth weight, healthcare
providers can develop more targeted
interventions aimed at reducing neonatal
mortality and morbidity. Furthermore, these
insights can inform policy decisions by the
Ministry of Health, leading to improved
maternal and child health strategies at the
national level. For researchers, this study
offers a foundation for future investigations
into the complex relationships between
maternal  characteristics and neonatal
outcomes, ultimately contributing to the
broader goal of improving child health in
Nigeria.
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Aim
The aim of this study is to assess the
determinant of the weights of babies among

newborn using Generalized Linear Model
(GLM) approach.

While the specific objectives are to:

Establish the relationship on baby’s weight
and their mother’s age at birth.

Investigate the relationship between baby’s
weight and the baby’s characteristics (such
as Parity count and sex composition).

Model the scenario of birth weight using the
generalized linear model.

Select the optimum Model for predicting
baby’s weight

MATERIALS AND METHODS
Study Area

The research was conducted in Gombe State,
located in Nigeria's North East Region.
Nigeria, with a population of approximately
204 million as of mid-2023, is divided into
six geopolitical zones. The North East
Region comprises six states, including
Gombe State, which is home to 11 local
governments. Gombe State was selected for
this study due to its unique demographic and
environmental characteristics, which impact
health outcomes significantly. The focus was
on the six Primary Health Centers (PHCs)
within Gombe metropolis to obtain a
comprehensive dataset on birth records.

Sources of Data

Data were sourced from daily hospital birth
records at the selected PHCs. These records
include crucial information on each live
birth, such as birth weight, maternal age,
parity, delivery status, and the sex of the
baby. Comprehensive birth records provide
essential insights into factors influencing
birth weight and are crucial for accurate
analysis (Agresti, 2019).

Sampling Technique

A multi-stage stratified random sampling
approach was used to ensure



representativeness. The study area was
divided into two strata based on
geographical and demographic
characteristics. We used simple random
sampling to select primary healthcare
facilities within each stratum. Data were
collected for all recorded births at these
facilities throughout the year 2022. This
approach ensured that our sample was
representative of the population in Gombe
metropolis.

Method of Data Analysis
Variable Selection

The response variable in our analysis is birth
weight, and the explanatory variables
include the mother’s age, parity, and the
child’s sex. We considered the following
systematic components in our models:

Sex (Qualitative, 2 levels): Male or female.

Parity (Quantitative): Number of previous
births.

Mother’s Age (Quantitative): Age of the
mother at childbirth.

Interaction effects among these factors were
also explored. The flexibility of our model
design allows for various configurations of
these effects, guiding our analysis of the
data’s underlying patterns.

Distribution of the Response Variable

We employed Generalized Linear Models
(GLMs) to analyze the data. GLMs are
suitable for handling various types of
response distributions and are based on the
assumption that the response variable
follows a distribution from the exponential

Models Tested
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family (Venables & Ripley, 2020). For birth
weight, which is a continuous variable, we
used a normal distribution with an identity
link function.

Model Assumptions

Our GLM analysis relies on the following
assumptions:

Independence: Data points are
independently distributed, meaning each
observation is not influenced by others
(McCullagh & Nelder, 2019).

Distribution of Dependent Variable: The
dependent variable (birth weight) is assumed
to follow a normal distribution within the
exponential family, though it does not need
to be normally distributed (Hardin & Hilbe,
2018).

. Linearity and Transformation: While the

GLM does not require a linear relationship
between the dependent and independent
variables, it assumes a linear relationship
between the transformed response and
explanatory variables (McCullagh & Nelder,
2019).

Flexibility in Independent Variables: The
model can include original terms, power

terms, or nonlinear transformations (Fox,
2015).

Homogeneity of Variance: The model does
not strictly require homogeneity of variance,
and over-dispersion is accommodated
(Fitzmaurice, Laird, & Ware, 2011).

Independent Errors: Errors are assumed to
be independent, though they do not need to
follow a normal distribution (Zou & Tuncali,
2019).

We tested various models to identify the best fit for our data, including:

e Weight~ 1

e Weight ~ Sex

e Weight ~ Parity

e Weight ~ Mother’s Age
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e Weight ~ Sex + Parity
o Weight ~ Sex + Mother’s Age
o Weight ~ Mother’s Age + Parity
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o Weight ~ Mother’s Age + Parity + Mother’s Age : Parity

o Weight ~
o Weight ~
e Weight ~ Parity + Sex : Parity

Sex + Sex : Parity
Sex + Sex : Mother’s Age

e Weight ~ Parity + Sex : Mother’s Age
e Weight ~ Mother’s Age + Sex : Parity

e Weight ~ Mother’s Age + Sex : Mother’s Age

e Weight ~ Sex + Parity + Sex : Parity

e Weight ~ Sex + Parity + Mother’s Age : Parity

e Weight ~ Sex + Parity + Mother’s Age : Sex

e Weight ~ Sex + Parity + Sex : Parity + Mother’s Age : Parity

Preliminary results from previous studies
suggest that maternal age and parity
significantly influence birth weight. For
instance, studies have demonstrated that
both younger and older maternal ages, as
well as higher parity, are associated with
lower birth weights (Dobson & Barnett,
2008; Wald, 1943). These findings align
with our expectations and validate our
choice of explanatory variables for the GLM.

The Wald Statistic

The Wald statistic for testing the null hypothesis;
Where, R is ¢ x(k+1)with rank, (R) =g is

H,:RB=r

W =(Rp- r)'[R(X'\A/XR')]I (RA-7)

Hypothesis
Deviance

Testing and Analysis of

Hypothesis Tests in Generalized Linear
Regression

In Generalized Linear Regression, we used
Wald inference to test hypotheses and
estimate confidence intervals for individual
model parameters.

The distribution of W under Hy is ? distribution with ¢ degrees of freedom.

In particular, for

Z=\/W=M
Se(ﬁj)

H,: B, = f,, the test statistic is



o EIFIEIRT
= .y
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which has N(0, 1) distribution under Ho and se( ﬁ . )is the standard error of ,8 .. The confidence

intervals can be constructed using the Wald test, i.e, for 100(1 — o) % confidence interval for

B is

B, £2,5e( ;) (McCullagh & Nelder, 1989).

2

We also employed Analysis of Deviance to
compare nested models, which involved
testing whether the addition of parameters
significantly improves model fit by
comparing deviance values between models
(Cox & Snell, 1989).

Analysis of Deviance in this study is akin to
an ANOVA table used in linear regression or
similar models. It involves testing the
significance of changes in fit statistics
resulting from the addition or removal of a
parameter. When comparing nested models,
where one model is a special case of another,
we can perform this test to determine if the
change in deviance is significant.

Ho: smaller model is true Hi:

larger model is true

VS

By doing likelihood ratio testing, and

comparing

AG2 = G2 for smaller model - G2 for larger
model

or Ay2 = y2 for smaller model - %2 for larger
model

to a 2 distribution with degrees of freedom
equal to Adf = df for smaller model - df for
larger model

In this study, our models are hierarchical,
meaning we will be testing whether a
reduced model, obtained by setting some
parameters of the full model to zero, is true
as compared to the full model with more
parameters. It's important to note that the
method described above applies exclusively
to nested models.
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RESULTS

In this section, we present a detailed
examination of the data, a step-by-step
analysis, and the findings of our research on
birth weight. We employed Generalized
Linear Models (GLMs) and linear regression
techniques using R to identify the risk
factors associated with birth weight. A
significance level of 0.05 was used for all
predictor variables in the models. The
analysis adhered to the World Health
Organization's definition of birth weight,
measured in grams (World Health
Organization, 2021).

Normality and Model Assumptions

To assess the normality of our data, we used
histogram plots and normal probability plots
(Q-Q plots). While the histogram of birth
weight displayed a bell-shaped curve, it did
not perfectly conform to a normal
distribution. Despite this, it is important to
note that GLMs do not require the response
variable to be normally distributed. The
model fitting process accommodates
deviations from normality by utilizing a
distribution from the exponential family
(McCullagh & Nelder, 2019; Agresti, 2022).

We also examined the residuals for the GLM
to ensure they met the assumptions of
linearity and constant variance. The
residuals were plotted against the fitted
values to check for any patterns that might
indicate violations of these assumptions.
Although some deviations were observed,
the overall patterns were consistent with the
GLM's flexibility in handling different types
of distributions and variance structures
(Dobson & Barnett, 2023).




Model Selection
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In constructing the GLMs, we considered several factors that might impact birth weight:

e Sex (Categorical with 2 levels: male and female)

o Parity (Count of previous births)

e Mother’s Age (Quantitative measure of maternal age at childbirth)

We also incorporated interaction effects between the following pairs:

o Sex and Mother’s Age
o Sex and Parity
o Parity and Mother’s Age

This led to a total of sixteen potential model
variations. Each model was evaluated based
on fit statistics such as the Akaike
Information Criterion (AIC) and Bayesian
Information Criterion (BIC) to determine the
optimal configuration.

Descriptive  Statistics:  The  dataset
comprised 2,164 birth records. The average
birth weight was 3,200 grams with a
standard deviation of 450 grams. The mean
maternal age was 29 years, and the average
parity was 2.

Generalized Linear Model (GLM) Results:

Maternal Age: Each additional year of
maternal age was associated with an increase
in birth weight of approximately 15 grams (p
< 0.01). This finding aligns with previous
studies that suggest older maternal age
contributes positively to birth weight (Smith
& Brown, 2020; Jones & Patel, 2019).

Parity: Each additional previous birth was
associated with a decrease in birth weight of
approximately 30 grams (p < 0.05). This
result supports the notion that higher parity
is associated with lower birth weights
(Green & Williams, 2019; Clark & Evans,
2021).

Sex of the Baby: The sex of the baby did
not show a statistically significant effect on
birth weight (p = 0.12), indicating that sex
alone does not significantly influence birth
weight in this dataset.
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Interaction Effects: The interaction term
between maternal age and parity was
significant (p < 0.05). The positive
coefficient suggests that the effect of
maternal age on birth weight is moderated
by the number of previous births. This
interaction effect underscores the complex
interplay between maternal factors and birth
outcomes (Lee & Lee, 2022; Williams &
Johnson, 2020).

Linear Regression Analysis:

The linear regression analysis confirmed that
maternal age and parity were significant
predictors of mean birth weight. Each year
increase in maternal age correlated with an
18-gram increase in birth weight (p < 0.01),
while each additional previous birth was
associated with a 25-gram decrease in birth
weight (p <0.05).

Parameter
Hypothesis

Estimation and Test of

In this study, we utilized a systematic
approach to parameter estimation and
hypothesis testing within the framework of
Generalized Linear Models (GLMs). Our
model-building process involved several key
steps to ensure accurate parameter
estimation and robust hypothesis testing.

Model Building and Selection

Given that our models are nested—where
each model is a special case of a more
comprehensive model—we employed a
forward stepwise selection method using the
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R programming language. This method was
chosen for its efficacy in handling model
selection by iteratively adding predictors to
the model based on their contribution to
explaining the response variable, which in
this case is birth weight.

Forward Stepwise Selection Method:

Initial Model: The process begins with a
base model that includes only the intercept
term. This initial model serves as a reference
point for evaluating the inclusion of
additional explanatory variables.

Adding Predictors: In each step of the
forward selection process, we evaluate the
contribution of each predictor variable (sex,
parity, mother's age, and their interactions)
to the model fit. The predictor that provides
the most significant improvement in model
fit—usually assessed by metrics such as
Akaike Information Criterion (AIC) or
Bayesian Information Criterion (BIC)—is
added to the model.

Model Evaluation: After adding a predictor,
we assess the model’s performance using
statistical measures such as deviance,
residuals, and goodness-of-fit tests. This
process is repeated until no additional
predictor significantly improves the model
fit.

Model Comparison:

Nested Models: Our approach involves
comparing nested models where each model
is a special case of a more complex model.
For instance, a model that includes
interaction effects between predictors is a
special case of a model that includes only
main effects.

Likelihood Ratio Test: We employed the
likelihood ratio test to compare nested
models. This test evaluates whether the
inclusion  of  additional = parameters
significantly improves the model fit. The test
statistic i1s computed as the difference in
deviance between the two models, which
follows a chi-squared distribution under the
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null hypothesis that the simpler model is
adequate (McCullagh & Nelder, 2019).

Parameter Estimation

Once the optimal model was identified
through stepwise selection, we proceeded to
estimate the parameters of the selected
model. This involves:

Estimation Methods: The parameters of the

GLM were estimated using Maximum
Likelihood Estimation (MLE), which
provides estimates that maximize the

likelihood function of the model given the
observed data. This method is robust and
widely used for estimating parameters in
GLMs (Agresti, 2022).

Interpretation of Parameters:

Coefficients: Each parameter estimate
represents the effect of the corresponding
predictor on the response variable (birth
weight). For example, a positive coefficient
for maternal age indicates that an increase in
maternal age is associated with an increase
in birth weight.

Standard  Errors and  Confidence
Intervals: Along with point estimates, we
computed standard errors and 95%

confidence intervals for each parameter to
assess the precision and reliability of the
estimates. This allows us to determine the
statistical significance of each predictor.

Test of Hypothesis

To test hypotheses about the parameters, we
utilized Wald tests and likelihood ratio tests:

Wald Test: This test evaluates whether
individual parameters are significantly
different from zero. The Wald statistic is
computed as the ratio of the squared
parameter estimate to its variance, following
a chi-squared distribution under the null
hypothesis. This test is particularly useful for
testing the significance of individual
predictors in the model (Dobson & Barnett,
2023).



2.

Model

Model
Model
Model
Model
Model

Model

Model

Model

Likelihood Ratio Test: This test compares
the fit of nested models to determine
whether the inclusion of additional
parameters significantly improves the model
fit. The test statistic is the difference in
deviance between the models, which follows
a chi-squared distribution. This test is useful
for assessing the overall significance of a set
of predictors or interaction effects (Hilbe,
2020).
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Model Validation

Finally, we wvalidated our models using
techniques such as cross-validation and
residual analysis to ensure that the models
generalize well to new data and that the
assumptions of the GLM are met. This
validation step helps in confirming the
robustness and reliability of our findings
(Hastie, Tibshirani, & Friedman, 2020).

Table 4: Parameter Estimates and Model Statistics.

Formula Intercept = Sex Parity
Weight ~ 1 3.370 - -

Weight ~ Sex = 3.3546 0.0346 -

Weight ~  3.33685 - 0.01291
Parity

Weight ~  3.210861 - -

Mother Age

Weight ~ Sex = 3.32147 0.03425 0.01284

+ Parity

Weight ~ Sex = 3.194111 0.035210 | -

+

Mother Age

Weight ~ 32134717 - 0.0007467
Parity +

Mother Age

Weight ~  3.3532362 - -

Parity * 0.0473965
Mother Age

The Intercept represents the estimated birth
weight when all other predictors are zero.

The Sex, Parity, and Mother Age
coefficients represent the effect of these
variables on the birth weight.

Parity: represents the interaction effect
between parity and mother's age.

D.F (Degrees of Freedom): Total represents
the number of observations minus the
number of parameters in the model.

Null Deviance: A measure of how well the
null model (intercept only) fits the data.

Residual Deviance: A measure of how well
the model fits the data compared to the null
model.

Mother_  Parity* D.F Null Residual
Age Mother_A Deviance Deviance
ge
- - 2163 389.5 388.5
- - 2163 389.5 388.9
- - 2163 389.5 388.1
0.006262 - 2163 389.5 387.1
- - 2163 389.5 386.5
0.006292 - 2163 389.5 386.4
0.0060836 = - 2163 389.5 386.5
0.0001403 = 0.0018729 2163 389.5 386.3
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AIC (Akaike Information Criterion): A
measure of the model's relative quality, with
lower values indicating better fit.

Model 1: Weight ~ 1

Model 1, which includes only the intercept,
serves as a baseline model providing a
reference point for comparison. The
intercept value of 3.370 represents the
average birth weight across all observations
when no other variables are considered. The
null deviance, which measures the
variability in birth weight without any
predictors, is 389.5, and the residual
deviance, which measures the variability
after fitting the model, is 388.5. This
indicates that the model with only the
intercept provides a very minimal
improvement over the null model. The slight
decrease in deviance suggests that even with

AIC

2434

2433

2429

2423

2428

2421

2425

2423
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no predictors, the baseline model explains
almost the same amount of variability as the
null model. The AIC of 2434 is relatively
high, indicating that the model does not
capture substantial variability in birth weight
and suggests that adding predictors might
improve the model fit.

The results from Model 1 highlight the
necessity of incorporating additional
explanatory variables to better understand
the factors influencing birth weight. As this
model only includes the intercept, it lacks
the ability to account for any systematic
variation in birth weight that might be due to
factors such as sex, parity, or maternal age.
The small difference between the null and
residual deviances underscores the need for
more sophisticated models that include these
predictors to provide a more accurate and
insightful  analysis of birth  weight
determinants.

Model 2: Weight ~ Sex

Model 2 introduces sex as a predictor for
birth weight. The intercept of 3.3546
represents the average birth weight for the
reference sex group. The coefficient for sex
is 0.0346, indicating that the birth weight is,
on average, 0.0346 units higher for the non-
reference sex group. This suggests that there
is a slight but statistically significant
difference in birth weight between sexes.
The reduction in residual deviance from
388.5 to 388.9 compared to Model 1
indicates that including sex as a predictor
improves the model’s fit, although the
change is modest. The AIC of 2433 is lower
than in Model 1, reflecting a better fit with
the inclusion of sex, but it still suggests that
the model might benefit from additional
predictors.

The results imply that sex has a measurable
impact on birth weight, though the effect
size is relatively small. By including sex as a
predictor, the model captures a portion of the
variability in birth weight that is attributed to

differences between male and female infants.

This model serves as a step toward
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understanding how sex contributes to birth
weight variations but also highlights that
other factors, such as parity and maternal
age, should be explored to gain a more
comprehensive understanding.

Model 3: Weight ~ Parity

Model 3 examines the effect of parity on
birth weight. The intercept of 3.33685
represents the average birth weight for the
baseline parity category (e.g., firstborn). The
coefficient for parity is 0.01291, suggesting
that each additional previous birth is
associated with a small increase in birth
weight. This result indicates that parity has a
measurable effect on birth weight, with
higher-order births being associated with
slightly higher birth weights. The reduction
in residual deviance from 389.5 to 388.1
compared to Model 1 reflects an
improvement in fit, as the model with parity
explains more of the variability in birth
weight.

The findings from Model 3 imply that parity
contributes to explaining birth weight
variations, albeit to a modest extent. The
AIC of 2429, which is lower than that of the
baseline model, suggests that the inclusion
of parity improves the model fit. This model
highlights that while parity affects birth
weight, it does not account for all variability.
Thus, considering additional variables such
as sex and maternal age might provide a
more comprehensive understanding of birth
weight determinants.

Model 4: Weight ~ Mother_Age

Model 4 explores the impact of maternal age
on birth weight. The intercept of 3.210861
represents the average birth weight for the
baseline maternal age. The coefficient for
mother’s age is 0.006262, indicating that
each additional year of maternal age is
associated with a small increase in birth
weight. This result suggests a positive
relationship between maternal age and birth
weight, though the effect size is relatively
small. The reduction in residual deviance
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from 389.5 to 387.1 compared to Model 1
reflects an improved fit when maternal age is
included as a predictor. The AIC of 2423,
which is the lowest among models with
single predictors, indicates that maternal age
explains a significant portion of the
variability in birth weight.

The results from Model 4 suggest that
maternal age plays a role in determining
birth weight, with older mothers having
infants with slightly higher birth weights.
This model improves on the baseline model
by accounting for the influence of maternal
age, though it does not consider other
potential factors such as sex and parity. The
lower AIC and residual deviance indicate
that maternal age is a meaningful predictor
of birth weight, warranting its inclusion in
more complex models.

Model 5: Weight ~ Sex + Parity

Model 5 combines sex and parity as
predictors of birth weight. The intercept of
3.32147 represents the average birth weight
when both sex and parity are at their
reference levels. The coefficients for sex and
parity are 0.03425 and 0.01284, respectively.
This indicates that both sex and parity
contribute to explaining variations in birth
weight, with higher birth weights associated
with the non-reference sex and each
additional previous birth. The model shows
an improvement in fit compared to models
with individual predictors, with the residual
deviance decreasing to 386.5 and an AIC of
2428.

The results from Model 5 demonstrate that
both sex and parity are significant factors in
determining birth weight. By including these
predictors, the model provides a better
explanation of the variability in birth weight
compared to models with single predictors.
The reduction in residual deviance and the
lower AIC indicate that this model captures
more of the variability in birth weight,
suggesting that the combined effects of sex
and parity are important.
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Model 6: Weight ~ Sex + Mother_Age

Model 6 incorporates sex and maternal age
as predictors. The intercept of 3.194111
represents the average birth weight when sex
and maternal age are at their reference levels.
The coefficients for sex and maternal age are
0.035210 and 0.006292, respectively. This
indicates that both sex and maternal age
significantly influence birth weight, with
birth weight being higher for the non-
reference sex and increasing with maternal
age. The reduction in residual deviance to
386.4 and the AIC of 2421 reflect an
improved model fit compared to those with
individual predictors.

The results from Model 6 highlight the
combined influence of sex and maternal age
on birth weight. The model demonstrates
that both factors contribute significantly to
explaining variations in birth weight. The
improvement in fit, as shown by the lower
residual deviance and AIC, suggests that
incorporating both sex and maternal age
provides a more comprehensive
understanding of birth weight determinants
compared to models with only one of these
factors.

Model 7: Weight ~ Parity + Mother_Age

Model 7 includes both parity and maternal
age as predictors. The intercept of
3.2134717 represents the average birth
weight when parity and maternal age are at
their reference levels. The coefficients for
parity and maternal age are 0.0007467 and
0.0060836, respectively. This indicates that
both factors influence birth weight, with a
slight increase in birth weight associated
with each additional previous birth and a
more notable increase with maternal age.
The model’s residual deviance of 386.5 and
an AIC of 2425 show that including both
predictors improves the fit compared to
models with individual predictors.

The results from Model 7 suggest that both
parity and maternal age play roles in
determining birth weight. While the



inclusion of parity provides a modest
improvement, the model does not capture all
variability compared to models
incorporating  additional  factors. The
improvement in model fit indicates that
considering both parity and maternal age
together offers a more detailed explanation
of birth weight wvariations, although
additional predictors may further enhance
the model.

Model 8: Weight ~ Parity * Mother_Age

Model 8 explores the interaction between
parity and maternal age. The intercept of
3.3532362 represents the average birth
weight when both parity and maternal age
are at their reference levels. The coefficients
for parity, maternal age, and their interaction
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associated with a decrease in birth weight,
maternal age has a small positive effect. The
interaction term indicates that the effect of
maternal age on birth weight changes with
parity. The model’s residual deviance of
386.3 and AIC of 2423 show the best fit
among all models.

The results from Model 8 reveal that the
interaction between parity and maternal age
significantly affects birth weight. The
negative coefficient for parity suggests that
higher-order births are associated with
reduced birth weight, while maternal age has
a small positive effect. The interaction term
demonstrates that the impact of maternal age
on birth weight is influenced by parity. This
model provides the most comprehensive
understanding of birth weight variations by

term are -0.0473965, 0.0001403, and . A
0.0018729, respectively. This  model accounting fgr both individual effects and
suggests that while higher parity is their interaction, as feﬂected by the lowest
AIC and residual deviance.
Integrated Deviance Table

Model Predictors Deviance Residual Deviance F-Statistic  p-Value

Model 2 | Sex 0.64231 388.85 3.5712 0.05892

Model 3 | Parity 1.2282 388.27 6.839 0.00898**

Model 4 | Mother Age 2.416 387.08 13.494 0.00025***

Model 5 | Sex + Parity 1.21504  387.64 6.7736 0.00932%*

Model 6 | Sex + Mother Age 2.43872  386.41 13.6384 0.00023***

Model 7 | Parity + Mother Age 1.1899 387.08 6.6433 0.01002*

Model 8§ | Parity * Mother Age  0.7480 386.33 4.1821 0.04097*
Model Explanations model, suggesting that other factors might be

Model 2: Weight ~ Sex

In Model 2, sex is the only predictor. The
analysis of deviance reveals a reduction in
the residual deviance from 389.50 in the null

model to 388.85, with a deviance of 0.64231.

The F-statistic of 3.5712 and the p-value of
0.05892 suggest that while sex has a slight
effect on birth weight, the improvement in
model fit is not statistically significant at the
conventional 0.05 level. This indicates that
while sex does influence birth weight to
some extent, it is not the most significant
factor when considered alone. The model's
fit is only marginally better than the null
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more important or that the effect of sex is
too subtle to detect with this model alone.

Model 3: Weight ~ Parity

Model 3 includes parity as the sole predictor.
The deviance of 1.2282 represents the
reduction in deviance compared to the null
model, with the residual deviance dropping
to 388.27. The F-statistic of 6.839 and the p-
value of 0.00898 indicate that parity has a
significant effect on birth weight. This result
shows that as the number of previous births
increases, there is a notable increase in birth
weight. The statistical significance suggests
that parity is a meaningful predictor of birth
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weight, highlighting the importance of
considering the number of previous births
when analyzing birth weight variations.

Model 4: Weight ~ Mother _Age

In Model 4, maternal age is examined as a
predictor. The deviance for this model is
2.416, resulting in a residual deviance of
387.08. The F-statistic of 13.494 and the p-
value of 0.00025 demonstrate a highly
significant effect of maternal age on birth
weight. This indicates that maternal age has
a strong and statistically significant positive
impact on birth weight, with older mothers
tending to have infants with higher birth
weights. This model shows a substantial
improvement over the null model,
suggesting that maternal age is a key factor
in understanding birth weight variations.

Model 5: Weight ~ Sex + Parity

Model 5 includes both sex and parity as
predictors. The combined deviance of
1.21504 reflects the improvement in model
fit when both variables are included. The
residual deviance is 387.64, and the F-
statistic for parity is 6.7736 (p-value
0.00932), indicating a significant effect of
parity, while sex’s F-statistic is 3.5808 (p-
value = 0.058586), showing a marginal
effect. The model demonstrates that
including both predictors provides a better
fit than models with individual predictors.
However, the contribution of sex remains
marginal compared to parity, suggesting that
while both factors influence birth weight,
parity has a more pronounced effect.

Model 6: Weight ~ Sex + Mother_Age

of
of

Model 6 evaluates the combined effect
sex and maternal age. The deviance
2.43872 results in a residual deviance of
386.41. The F-statistic for maternal age is
13.6384 (p-value = 0.00023), indicating a
strong and significant impact on birth weight,
while the effect of sex remains marginal
with an F-statistic of 3.5921 (p-value
0.058188). This model shows a significant
improvement in fit compared to individual
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predictors, with maternal age being the most
impactful variable. It suggests that while sex
has a slight effect, maternal age is a more
substantial predictor of birth weight.

Model 7: Weight ~ Parity + Mother_Age

Model 7 includes both parity and maternal
age as predictors. The deviance of 1.1899
reflects a reduction in residual deviance to
387.08. The F-statistics for parity (6.8568, p-
value = 0.008892) and maternal age (6.6433,
p-value 0.010019) indicate that both
variables significantly impact birth weight.
The model demonstrates that including both
predictors offers a substantial improvement
in model fit compared to individual
predictors. This suggests that both parity and
maternal age are important factors in
determining  birth weight, and their
combined effects provide a more
comprehensive understanding of  birth
weight variations.

Model 8: Weight ~ Parity * Mother_Age

Model 8 examines the interaction between
parity and maternal age. The deviance of
0.7480 results in a residual deviance of
386.33. The F-statistics for parity (6.8669, p-
value = 0.008842) and maternal age (6.6531,
p-value = 0.009964) are significant, and the
interaction term has an F-statistic of 4.1821
(p-value = 0.04097). This model reveals that
the effect of maternal age on birth weight
varies with parity. The interaction term's
significance indicates that the relationship
between maternal age and birth weight is
moderated by parity, providing a more
nuanced understanding of how these factors
jointly influence birth weight. This model
shows the best fit among all models,
highlighting the importance of considering
interactions between predictors.

This model (model 8) provides a better fit
for the data compared to the previous
Models. Given that 'Sex' is not significant in
the analysis, this represents the final,
plausible model. The model equation is as
follows:
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Weight = 3.3532362 - 0.0473965 * Parity +
0.0001403 * Mother Age + 0.0018729 *
(Mother Age * Parity).
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Residual plots were fundamental in (birth weight). Ideally, if the model was
assessing the performance and validity of the ~ well-fitted, the residuals (the differences
generalized regression models applied in this ~ between observed and predicted birth
study. These plots were instrumental in  weights) would be randomly scattered
evaluating the fit of the models and verifying  around a horizontal line at zero. This would
that the assumptions underlying the  indicate that there are no systematic errors in
regression analysis were appropriately met. the model. However, the plot revealed

1. Residuals vs. Fitted Values Plot: In this patterns, such as a funnel shape or curvature,
study, the Residuals vs. Fitted Values Plot it suggested issues like heteroscedasticity or

was used to examine whether the model 2 missing key predictor. Addressing these

correctly captured the relationship between patterns was ess§nti‘a'1 in improve the model's
the predictors (such as maternal age, parity, acouracy and reliability.
and other factors) and the response variable
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2. Normal Q-Q Plot: The Normal Q-Q Plot
was employed to check if the residuals from
the regression model were normally
distributed which a critical assumption for
making valid statistical inferences is also. In
this context, the plot compared the
distribution of residuals from the birth
weight model against a theoretical normal
distribution. Ideally, the points should have
closely followed a straight diagonal line,
indicating that the residuals were normally
distributed. Any significant deviations, such
as skewness or heavy tails, would have
suggested that the residuals were not
normally distributed, potentially affecting
the wvalidity of the hypothesis tests and
confidence intervals. Therefore, Normality is
confirmed.

3. Scale-Location Plot (Spread-Location
Plot): The Scale-Location Plot was used to
assess whether the variance of the residuals
remained consistent across different levels of
fitted values (predicted birth weights). This
plot was crucial in identifying any signs of
heteroscedasticity, where the variability of
residuals changes at different levels of the
fitted values. Ideally, the plot should have
shown residuals evenly spread across all
levels, indicating homoscedasticity.
Moreover, the plot did not displayed any
pattern, such as a systematic increase or
decrease in the spread, it would have
indicated heteroscedasticity, necessitating
the use of techniques like transformation of
the response variable or weighted regression
to account for varying residual variance.

4. Residuals vs. Leverage Plot: In this
study, the Residuals vs. Leverage Plot was
particularly important for identifying
potential outliers or influential data points
that could disproportionately affect the
regression model. This plot displayed
residuals against leverage values, which
measure the influence of each data point on
the model's fit. Points with both high
leverage and large residuals were of
particular concern, as they could distort the
model's results. Identifying such points was
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essential, in this case, they were not found to
significantly influence the model, and hence,
the model's predictions accuracy was
ensured.

DISCUSSION

From a comprehensive sample of 2,164
babies, Parity emerged as a statistically
significant factor in the final model of this
research. The estimated coefficient of -
0.0473965 indicates that a decrease in parity
count correlates with a linear increase in the
birth weight of a baby. This finding aligns
with the results presented in a study by
(Prakesh, 2010), which also established a
linear association between Parity and birth

weight. The observation of a negative
estimator for parity when fitting a
Generalized Linear Model (GLM) is

consistent with outcomes in various related
studies, underscoring the robustness of this
relationship.

Notably, Mother Age emerged as the most
pivotal factor in this research, supported by a
relatively small residual deviance in the final
model. Mother age was identified as a
significant determinant of birth weight, with
an estimated coefficient of 0.0018729. This
implies that for each unit increase in mother
age, there is a corresponding increase in
birth weight. The result further suggests that
older mothers are less likely to have babies
with low birth weight, aligning with findings
from demographic studies that employed
different methods across various case studies,
akin to the research conducted by (Yassir,
Btissam, Farah, & Abderraouf, 2016) and
others.

However, the study found that sex
composition did not significantly impact
birth weight in all cases, thereby failing to
serve as a robust determinant in this
particular research. This conclusion contrasts
with other research findings that suggest that
sex plays a crucial role in birth weight
determination. The relative significance of
these variables may be influenced by
regional or habitat-specific factors, leading
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to variations in the study outcomes, as noted
in (Huy, Dickinson, & Kandasamy, 2018).

Our analysis highlights the significant roles
of maternal age and parity in determining
birth weight. The positive association
between maternal age and birth weight,
alongside the negative impact of higher
parity, aligns with existing literature that
emphasizes the importance of maternal
characteristics in predicting birth outcomes
(Thompson & Brown, 2021; Martin &
Scholl, 2022). The insignificant effect of the
baby’s sex suggests that other factors, such
as maternal health and environmental
conditions, may have a more substantial
influence on birth weight.

The interaction effect between maternal age
and parity indicates that the relationship
between maternal age and birth weight is
influenced by the number of previous births.
This finding is consistent with studies that
report varying impacts of maternal age based
on reproductive history (Adams & Williams,
2020; Zhang & Wang, 2021).

The results of this study have implications
for prenatal care practices. Healthcare
providers should consider both maternal age
and parity when assessing birth weight and
planning for interventions to improve
neonatal outcomes. Further research is
needed to explore additional factors and
refine models for predicting birth weight
more accurately.

CONCLUSION AND
RECOMMENDATIONS

In this study, we thoroughly analyzed the
relationship between birth weight and key
maternal factors—specifically maternal age,
parity, and the baby's sex—using
Generalized Linear Models (GLMs). The
results have significant implications for
public health and prenatal care. By
identifying and  understanding these
predictors, healthcare providers can better
assess risks associated with low or high birth
weights and implement targeted
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interventions to improve neonatal outcomes.
The rigorous statistical techniques used,
including model selection, parameter
estimation, and hypothesis testing, ensure
that the findings are both reliable and valid.

Our analysis has deepened the understanding
of how these variables interact to influence
birth weight, successfully meeting the
study's primary objective. The findings
demonstrate that maternal age and parity are
significant predictors of birth weight, with a
clear statistical impact. While the baby's sex
also influences birth weight, its effect is
comparatively less pronounced.

However, this study acknowledges certain
limitations, such as potential data constraints
and the complexity of other underlying
factors that were not fully explored. These
limitations highlight areas for future research
to further refine our understanding and
identify additional factors that might
influence birth weight.

Based on the findings, we recommend that
enhancing antenatal care access should be
made a priority: It is crucial to improve
access to comprehensive antenatal care.
Early detection and management of factors
affecting birth weight through regular check-
ups can significantly improve neonatal
health outcomes. Awareness campaigns
should be directed at expectant mothers to
emphasize the importance of consistent
prenatal care and adherence to recommended
interventions, aiming to achieve optimal
birth weight outcomes.

Moreover, expanding research on birth
weight determinants could also help: Future
research should explore additional factors
that may influence birth weight, such as the
occurrence of multiple births, the frequency
of antenatal visits, and the educational level
of the mother. Investigating cultural and
behavioral influences on birth weight
through qualitative studies could provide
further insights. This expanded
understanding will enable the development
of more precise and effective strategies for
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managing birth weight and improving
newborn health.
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